
SIAM REVIEW © 2019 Society for Industrial and Applied Mathematics
Vol. 61, No. 3, pp. 549–595

Coin-Flipping, Ball-Dropping, and
Grass-Hopping for Generating Random
Graphs from Matrices of Edge Probabilities∗

Arjun S. Ramani†

Nicole Eikmeier‡

David F. Gleich§

Abstract. Common models for random graphs, such as Erdős–Rényi and Kronecker graphs, correspond
to generating random adjacency matrices where each entry is nonzero based on a large matrix
of probabilities. Generating an instance of a random graph based on these models is easy,
although inefficient, by flipping biased coins (i.e., sampling binomial random variables) for
each possible edge. This process is inefficient because most large graph models correspond
to sparse graphs where the vast majority of coin flips will result in no edges. We describe
some not entirely well-known, but not entirely unknown, techniques that will enable us to
sample a graph by finding only the coin flips that will produce edges. Our analogies for
these procedures are ball-dropping, which is easier to implement, but may need extra work
due to duplicate edges, and grass-hopping, which results in no duplicated work or extra
edges. Grass-hopping does this using geometric random variables. In order to use this idea
for complex probability matrices such as those in Kronecker graphs, we decompose the
problem into three steps, each of which is an independently useful computational primitive:
(i) enumerating nondecreasing sequences; (ii) unranking multiset permutations; and (iii)
decoding and encoding z-curve and Morton codes and permutations. The third step is the
result of a new connection between repeated Kronecker product operations and Morton
codes. Throughout, we draw connections to ideas underlying applied math and computer
science, including coupon collector problems.

Audience. This paper is designed, primarily, for undergraduates who have some experience with
mathematics classes at the level of introduction to probability, discrete math, calculus,
and programming, as well as for educators teaching these classes. We try to provide
pointers to additional background material where relevant—and we also provide links to
various courses throughout applied math and computer science to facilitate using this
material in multiple places. Our program codes are available through the github repository
https://github.com/dgleich/grass-hopping-graphs.

Key words. graph sampling, Erdős–Rényi, Kronecker graphs, Morton codes, unranking multisets,
coupon collector

AMS subject classifications. 05C80, 15A24, 05A15

DOI. 10.1137/17M1127132

∗Received by the editors April 25, 2017; accepted for publication (in revised form) September 5,
2018; published electronically August 7, 2019.

https://doi.org/10.1137/17M1127132
Funding: This work was supported in part by DOE award DE-SC0014543, NSF CAREER

CCF-1149756, IIS-1422918, IIS-1546488, and the NSF Center for the Science of Information STC
CCF-0939370. The work of the third author was also supported by the DARPA SIMPLEX program
and the Sloan Foundation.
†West Lafayette Jr/Sr High School, West Lafayette, IN 47906 (aramani@purdue.edu).
‡Department of Mathematics, Purdue University, West Lafayette, IN 47907 (eikmeier@purdue.edu).
§Department of Computer Science, Purdue University, West Lafayette, IN 47907 (dgleich@

purdue.edu).

549

https://github.com/dgleich/grass-hopping-graphs
https://doi.org/10.1137/17M1127132
mailto:aramani@purdue.edu
mailto:eikmeier@purdue.edu
mailto:dgleich@purdue.edu
mailto:dgleich@purdue.edu

550 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Contents

1 Introduction and Motivation for Fast Random Graph Generation 550

2 Random Graph Models and Matrices of Probabilities 553
2.1 The Adjacency Matrix . 553
2.2 A Random Adjacency Matrix as a Random Graph 553
2.3 The Erdős–Rényi Model . 554
2.4 Random Graph Models as Matrices of Probabilities 554
2.5 The Coin-Flipping Method for Sampling a Random Graph 554
2.6 The Kronecker Model . 555
2.7 The Chung–Lu model . 556
2.8 The Stochastic Block Model . 557
2.9 Undirected Graphs . 558

3 Efficiently Generating Edges for Erdős–Rényi Graphs: Ball-Dropping and
Grass-Hopping 558
3.1 Ball-Dropping . 559
3.2 Grass-Hopping . 561
3.3 Comparing Ball-Dropping to Grass-Hopping with Coupon Collectors . 563
3.4 A Historical Perspective on Leap-Frogging, Waiting Times, and the

Geometric Method . 564

4 Chung–Lu and Stochastic Block Models: Unions of Erdős–Rényi Graphs 565

5 Fast Sampling of Kronecker Graphs via Grass-Hopping 566
5.1 The Problem with Ball-Dropping . 567
5.2 Kronecker Graphs as Unions of Erdős–Rényi 569
5.3 The Number of Erdős–Rényi Regions in a Kronecker Matrix 569
5.4 The Strategy for Grass-Hopping on Kronecker Graphs: Multiplication

Tables and Kronecker Products . 572
5.5 Enumerating All Erdős–Rényi Regions 574
5.6 Grass-Hopping within an Erdős–Rényi Region in the Multiplication

Table: Unranking Multiset Permutations 576
5.7 Mapping from the Multiplication Table to the Kronecker Graph: Morton

Codes . 578
5.8 The Proof of the Multiplication Table to Kronecker Matrix Per-

mutation . 584
5.9 Fixing Ball-Dropping Using What We’ve Learned 586

6 Problems and Pointers 588
6.1 Recap of the Major Literature . 589
6.2 Pointers to More Complex Graph Models 589
6.3 Problems . 590

References 593

1. Introduction and Motivation for Fast Random Graph Generation. The util-
ity of a random graph is akin to the utility of a random number. Random numbers,
random variables, and the framework of statistical hypothesis testing provide a con-

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 551

Measured 30 32 33 31 29 25

Expected 30 30 30 30 30 30

Statistic 0 2/15 3/10 1/30 1/30 5/6 4/3

Fig. 1 An example of statistical hypothesis testing in the classic scenario with a closed form solution.
Here, the closed form χ2 test works to determine if a dice is “fair”. In this case, we conclude
there is a 93% chance the dice is fair. For random graph models, we often have no analytic
way to determine the quantities akin to the expected number or the values from the cumulative
distribution function. Thus, we need to quickly generate a large number of random graphs to
generate simulation based estimates instead.

venient way to study and assess whether an apparent signal or pattern extracted
from noisy data is likely to be real or the result of chance. In this setting, a random
variable models the null-hypothesis where the effect is due to chance alone. By way
of example, testing whether a standard six-sided dice is “fair” involves a random
variable with a χ2 distribution. The way this test works is illustrated in Figure 1.
We compare the number of times the dice rolls each number with the expected num-
ber of times under the fair hypothesis. For each outcome, such as , we compute
(Measured − Expected)2/Expected. Then we sum these over all outcomes. The re-
sulting number is a statistic called Pearson’s cumulative test statistic. (In the figure,
this is 4/3.) The test statistic is also a random variable because if we rolled the dice
another set of times, we could get a different value. A random variable with a χ2

distribution is the behavior of this test statistic when the dice is exactly fair.

Aside 1. This type of analysis and
methodology is called statistical hy-
pothesis testing and can be extended
to more complex scenarios. Esti-
mating these distributions from test
statistics results in studies which are
fascinating in their own right.

The famous p-value is the probability that a
fair die would give rise to a test statistic value
greater than the computed test statistics (which
is 4/3). In other words, we look at the probabil-
ity that a value from a χ2 distribution is bigger
than 4/3. The resulting probability (p = 0.931)
provides a convenient estimate of how likely the
dice is to be fair. In this case, we computed the
probability using an analytic description of the χ2

distribution (strictly speaking, this test involves the χ2 distribution with five degrees
of freedom). The probability should be large if the dice is fair and small if it is unlikely
to be fair. Often, the probability p = 0.05 is chosen arbitrarily as a cut-point to
distinguish the two cases (p ≥ 0.05 means fair, and p < 0.05 means maybe not fair),
but this value should be used judiciously.

Statistical hypothesis testing on graphs is largely the same (Moreno and Neville,
2013; Koyutürk, Szpankowski, and Grama, 2007; Koyutürk, Grama, and Szpankowski,
2006; Milo et al., 2002). We use a random graph model as the null hypothesis, which is
akin to the fair hypothesis used in the example above. Then we measure something on
a real-world graph and compare what we would have expected to get on a set of random
graphs. Consider, for instance, the study by Milo et al. (2002) on the presence of motifs
in networks. This study defines network motifs as patterns of connectivity that are
found more frequently in a network than might be expected in a random network. In

552 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

social networks such as Facebook, a common motif is a triangle. If you have two friends,
then it is much more likely that your friends are also friends, which forms a triangle struc-
ture in the graph. This property does not exist in many random models of networks.

Aside 2. In fact, creating ran-
dom graph models with the property
that they have a nontrivial num-
ber of triangles is an active area of
study! Recent work in this vein in-
cludes Kolda et al. (2014); Newman
(2009).

One critical difference from traditional statistics,
however, is that we often lack closed-form rep-
resentations for the probability of many events
in random graph models. There was no known
expression for the number of motifs that Milo
should expect, unlike the case of the dice and
the χ2 distribution. In fact, in the studies above,
only (Koyutürk, Grama, and Szpankowski, 2006;
Koyutürk, Szpankowski, and Grama, 2007) had
closed-form solutions.

Thus, we turn to empirical simulations. One of the easiest and most common
methods to do these studies (such as Milo et al. (2002)) leverages the computer to
generate hundreds or hundreds of thousands of instances of a random graph and
compute their properties. In comparison with the dice example, if we had access
to a dice that was guaranteed to be fair, we could have generated an empirical
distribution for Pearson’s cumulative test statistic by tossing the fair dice a few
thousand times. Then, an estimate of the probability that the statistic is larger could
be computed just by checking the number of instances where the sample was larger.

Aside 3. Fisher (1936) mentions
this “trivial” toss-dice-and-check
idea as the basis of all rigorous work
in the area of hypothesis testing.
More recently, as the power of com-
putation has grown, others includ-
ing Ernst (2004) have suggested re-
newed focus on these empirical and
computational tests rather than an-
alytic results.

To do this, we would need a fast way of tossing
dice! For random graphs, it almost goes without
saying that we also need this random graph gener-
ation, which is also called random graph sampling,
to be as fast and efficient as possible.

Statistical hypothesis testing is not the only
use for random graphs. There are a variety of
other scenarios that also require fast sampling
such as benchmarking high performance comput-
ers (Murphy et al., 2010) and synthetic data to
evaluate algorithms (Kloumann, Ugander, and
Kleinberg, 2016). As we shall see, there are a
variety of efficient methods that result in slightly biased or approximate samples from
these graph models. These could be appropriate in a variety of scenarios including
those above, but it is important to understand the nature of the bias or approximation
to avoid drawing the wrong conclusion from the computational experiments. This
can often be challenging as there are subtle biases that can easily arise; we’ll see an
example in section 5.1. In this paper, we focus on exactly sampling the true random
graph model as a simple alternative.

In this paper, we will explain and illustrate how to generate random graphs
efficiently when the random graph model is described by a matrix of probabilities for
each edge. This is admittedly a special case, but it handles some of the most widely
used random graph distributions:

- the Erdős–Rényi model (section 2.3),
- the Kronecker model (section 2.6),
- the Chung–Lu model (section 2.7), and
- the stochastic block model (section 2.8).

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 553

We will pay special attention to some of the structures present in the matrices of
probabilities of stochastic Kronecker graphs and how to take advantage of them to
make the process go faster. Along the way, we’ll see examples of a number of classic
discrete structures and topics:

- binomial and geometric random variables,
- the coupon collector problem,
- enumerating nondecreasing sequences,
- unranking multiset permutations, and
- Morton and Z-curves.

Throughout, we are going to explain these concepts and ideas both mathematically
and programmatically. We include runnable Python code in the paper to make it easy
to follow along; see https://github.com/dgleich/grass-hopping-graphs/ for our code.

2. Random Graph Models and Matrices of Probabilities. A graph consists of
a set of vertices V and a set of edges E, where each edge e ∈ E encodes relation-
ships between two vertices, which is often written e = (u, v) for u, v ∈ V . We
consider the more general setting of directed graphs in this paper, although we
describe how all of the ideas specialize to undirected graphs in section 2.9. A ran-
dom graph consists of a set of random edges between a fixed number of vertices.

Aside 4. There are more general
definitions of random graphs that
do not impose a fixed number of
vertices, such as preferential attach-
ment (Barabási and Albert, 1999),
but this simple setting will serve our
purposes.

How should these random edges be chosen? That
turns out to depend on the particular random
graph model.

The models we consider generate a random
adjacency matrix where each entry Aij in the
adjacency matrix is 0 or 1 with probability Pij for
some given matrix of probabilities P . Let’s dive
into these details to understand exactly what this
means.

2.1. The Adjacency Matrix. The adjacency matrix encodes the information of
the nodes and edges into a matrix. For instance,

if the graph is A

B

C D

E

F

G
, the adjacency matrix is

ABCDE F G


A 0 1 1 0 0 0 0
B 1 0 0 1 1 0 0
C 0 1 0 1 0 0 0
D 0 0 1 0 1 0 1
E 0 0 1 0 0 0 0
F 0 0 0 1 0 0 0
G 0 0 0 0 0 0 0

.

Formally, the adjacency matrix is created by assigning each vertex v ∈ V a unique
number between 1 and |V | often called an index. Then each edge e = (u, v) ∈ E
produces an entry of 1 in the coordinate of the matrix that results in mapping u and
v to their indices. That is, if i and j are the indices of u and v, then entry i, j of
the matrix has value 1. All other entries of the matrix are 0. In the case above, we
mapped A to index 1, B to index 2, and so on.

2.2. A Random Adjacency Matrix as a Random Graph. Note that this process
can go the other way as well. If we have any n-by-n matrix where each entry is 0 or
1, then we can interpret that matrix as the adjacency matrix of a graph! What we
are going to do is (i) generate a random matrix with each entry being 0 or 1 and (ii)
interpret that matrix as a set of random edges to give us the random graph.

https://github.com/dgleich/grass-hopping-graphs/

554 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Aside 5. In fact, there are many as-
pects of sparse matrix computations
that are most easily understood by
viewing a sparse matrix as a graph
and computing a graph algorithm
such as breadth-first search (Davis,
2006).

At this point, we need to mention a distinc-
tion between directed and undirected graphs. By
convention, an undirected graph has a symmetric
adjacency matrix where Aij = 1 and Aji = 1 for
each undirected edge. Our focus will be on gener-
ating random nonsymmetric matrices A. These
techniques will still apply to generating symmetric
graphs, however. For instance, we can interpret a
nonsymmetric A as an undirected graph by only considering entries Aij where i < j (or,
equivalently, Aij where i > j) and then symmetrizing the matrix given one of these tri-
angular regions. (In MATLAB, this would be: T = triu(A,1); G = T+T’; in Python,
it would be T=np.triu(A,1); G=T+T.T.) We return to this point in section 2.9.

2.3. The Erdős–Rényi Model. Perhaps the first idea that comes to mind at this
point is tossing a coin to determine whether an entry in the adjacency matrix should
be 0 or 1. While a simple 50%-50% coin toss is suitable for randomly choosing between
the two, there is no reason we need 1’s (the edges) to occur with the same probability
as 0’s (the nonedges). Let p be the probability that we generate a 1 (an edge) and let

(2.1) Aij =

{
1 with probability p

0 with probability 1− p
for each i, j in an n-by-n matrix.

Aside 6. The Erdős–Rényi graph as
we consider it was actually proposed
by Edgar Gilbert (Gilbert, 1959) at
the same time at Erdős and Rényi’s
famous paper (Erdős and Rényi,
1959). Erdős and Rényi proposed a
slight variation that fixed the num-
ber of edges and placed them uni-
formly at random.

This model is called the Erdős–Rényi model. It
is one of the simplest types of random graphs
and has n nodes, where any 2 nodes have prob-
ability p of being connected with a directed edge.
Erdős–Rényi graphs are traditionally constructed
by considering each edge separately and using the
method of coin-flipping, which will be discussed
in section 2.5.

2.4. Random Graph Models as Matrices of
Probabilities. Now, you might be wondering why
we use only a single probability p for each edge
in the Erdős–Rényi model. The random graph models we study here have an entry
Pij for each i, j, which is a more general setting than the Erdős–Rényi construction:

(2.2) Aij =

{
1 with probability Pij

0 with probability 1− Pij
for each i, j in an n-by-n matrix.

Thus, if we set Pij = p, then this more general model corresponds to the Erdős–Rényi
model. Now, of course, this begs two questions: How do we choose Pij? How do we
generate a random matrix A? We will describe three common random graph models
that consist of a choice of Pij : the Kronecker model, the Chung–Lu model, and the
stochastic block models. We will also describe the coin-flipping method of sampling
a random graph at this point. However, in subsequent sections we will show how to
sample each of these models more efficiently than using the coin-flipping method.

2.5. The Coin-Flipping Method for Sampling a Random Graph. Given the
matrix of probabilities P , the easiest way to generate a random adjacency matrix
where Aij is 1 with probability Pij is to explicitly simulate biased coin flips (which

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 555

Listing 1 A simple code to generate a random graph by coin flipping

import random # after this, random.random() gives a uniform [0,1] value

import numpy as np # numpy is the Python matrix package

"""

Generate a random graph by coin flipping. The input is a square matrix P with entries

between 0 and 1. The result is a 0 or 1 adjacency matrix for the random graph.

Example:

coinflip(0.25*np.ones((8,8))) # generate a random Erdos-Renyi graph

"""

def coinflip(P):

n = P.shape[0]

assert(n == P.shape[1]) # make sure we have a square input

A = np.zeros_like(P) # create an empty adjacency matrix

for j in range(n):

for i in range(n): # fill in each entry as 1 with prob P[i,j]

A[i,j] = random.random() <= P[i,j]

return A

are also Bernoulli random variables). A pragmatic way to do this is to use a random
number generator that produces a uniform distribution of values between 0 and 1.

Aside 7. Computers typically use
pseudorandom number generators,
which have their own fascinating
field (Gentle, 2003; Knuth, 1997).

This is pragmatic because most computer lan-
guages include such a routine and make sure it is
efficient. Given such a random value ρ, we set Aij
to 1 if ρ ≤ Pij (which happens with probability
Pij). An example of this is shown in Listing 1.
Note that the indices in Python range from 0 to
n − 1 rather than from 1 to n as is common in
mathematical descriptions of matrices.

2.6. The Kronecker Model. The Kronecker random graph model results in a
nonuniform but highly structured probability matrix P . It begins with a small initiator
matrix K with n nodes which is then enlarged into a bigger matrix of probabilities
P by taking successive Kronecker products (Chakrabarti, Zhan, and Faloutsos, 2004;
Leskovec et al., 2005, 2010). For an example, suppose K is a 2-by-2 initiator matrix

(2.3) K =

[
a b
c d

]
,

where each a, b, c, d is a probability. The Kronecker product of K with itself is given
by

K ⊗K =

[
a ·K b ·K
c ·K d ·K

]
=




aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd


 .

Finally, the kth Kronecker product of K is just

(2.4) K ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
k times

,

556 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

which is a 2k-by-2k matrix. As a concrete example, let K = [0.99 0.5
0.5 0.2]; then

(2.5)

K⊗K =

[
0.9801 0.495 0.495 0.25
0.495 0.198 0.25 0.1
0.495 0.25 0.198 0.1
0.25 0.1 0.1 0.04

]
, K⊗K⊗K =




0.97 0.49 0.49 0.25 0.49 0.25 0.25 0.13
0.49 0.20 0.25 0.10 0.25 0.10 0.13 0.05
0.49 0.25 0.20 0.10 0.25 0.13 0.10 0.05
0.25 0.10 0.10 0.04 0.13 0.05 0.05 0.02
0.49 0.25 0.25 0.13 0.20 0.10 0.10 0.05
0.25 0.10 0.13 0.05 0.10 0.04 0.05 0.02
0.25 0.13 0.10 0.05 0.10 0.05 0.04 0.02
0.13 0.05 0.05 0.02 0.05 0.02 0.02 0.01


 .

We use these kth Kronecker products as the matrix of probabilities for the random
graph. This gives us (in general) an nk-by-nk matrix of probabilities P for an nk-node
random graph. It quickly becomes tedious to write out these matrices by hand. As
might be guessed from the small set of parameters underlying it, there is structure
inside of this matrix of repeated Kronecker products, and we will return to studying
and exploiting its patterns in section 5.

There are a variety of motivations for repeated Kronecker products as a graph
model. On the modeling side, the idea underlying Kronecker graphs is that a graph
that is twice as big should look like a perturbed version of the current graph. This
type of self-similarity is a commonly assumed feature of real-world networks (Ravasz
and Barabási, 2003; Dill et al., 2002; Leskovec et al., 2010). On the practical side,
Kronecker graphs are extremely parsimonious and require only the entries of a small
n-by-n matrix, where n is between 2 and 5. Second, they can generate a variety
of graphs of different sizes by adjusting k. Third, the graphs they produce have a
number of highly skewed properties (Seshadhri, Pinar, and Kolda, 2013). These reasons
make the Kronecker model a useful synthetic network model for various real-world
performance studies (Murphy et al., 2010). On the statistical side, Kronecker models
have some of the same properties as real-world networks (Leskovec et al., 2010). As
such, they provide nontrivial null models.

2.7. The Chung–Lu model. Recall that the degree, du, of a vertex u is just the
number of edges leaving u. For example, in the graph from section 2.1, the degrees of
the nodes in alphabetical order are (2, 3, 2, 3, 1, 1, 0). Many important and interesting
features of a graph are fundamentally connected to the degrees of the vertices (Adamic
et al., 2001; Litvak, Scheinhardt, and Volkovich, 2006), and this fact is the motivation
for the Chung–Lu random graph model. We wish to have a random graph with vertices
of roughly the same degree as the network we are studying to understand whether the
properties we observe (in the real network) are due to the degrees or to the network
structure. This is almost exactly what Milo et al. (2002) did when they wanted to
understand if a motif pattern was significant.

In the Chung–Lu model, we need, as input, the desired degree of each vertex in
the resulting random graph. For example, say we want to generate an n-by-n graph
where vertex 1 has degree d1, vertex 2 has degree d2, and so on. Specifically, suppose
we want an eight vertex network with one node of degree 4, one node of degree 3,
three nodes of degree 2, and three nodes of degree 1. The corresponding matrix is

P =




1.00 0.75 0.50 0.50 0.50 0.25 0.25 0.25
0.75 0.56 0.38 0.38 0.38 0.19 0.19 0.19
0.50 0.38 0.25 0.25 0.25 0.13 0.13 0.13
0.50 0.38 0.25 0.25 0.25 0.13 0.13 0.13
0.50 0.38 0.25 0.25 0.25 0.13 0.13 0.13
0.25 0.19 0.13 0.13 0.13 0.06 0.06 0.06
0.25 0.19 0.13 0.13 0.13 0.06 0.06 0.06
0.25 0.19 0.13 0.13 0.13 0.06 0.06 0.06


 .

This matrix results from setting

(2.6) Pij =
didj∑
k dk

.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 557

To understand why this is a good choice, let’s briefly consider the expected degree
of vertex i. In the adjacency matrix, we can compute the degree by taking the sum of
all entries in a row. Here we have, in expectation,

(2.7) E


∑

j

Aij


 =

∑

j

E[Aij] =
∑

j

Pij =
∑

j

didj∑
k dk

= di.

This analysis shows that, in expectation, this choice of probabilities results in a random
graph with the correct degree distribution.

2.8. The Stochastic Block Model. Another feature of real-world networks is that
they have communities (Flake, Lawrence, and Giles, 2000; Newman and Girvan, 2004).
A community is a group of vertices that are more tightly interconnected than they are
connected to the rest of the graph. Pictorially this results in a graph such as

where there are two communities: blue and red. The stochastic block model is designed
to mirror this structure in a random graph. Suppose we want a random graph with
two communities with n1 and n2 nodes, respectively. We want there to be a high
probability, p, of edges within a community, and a low probability of edges between
the communities, q < p. Formally, this corresponds to a probability matrix

(2.8) Pij =

{
p if i, j are in the same community,

q if i, j are in different communities,
where p > q.

The reason this is called the stochastic block model is that it can be written with a
set of block matrices. Consider n1 = 3, n2 = 5, p = 0.7, and q = 0.1:

(2.9) P =




p q

q p


 =




0.7 0.7 0.7 0.1 0.1 0.1 0.1 0.1
0.7 0.7 0.7 0.1 0.1 0.1 0.1 0.1
0.7 0.7 0.7 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7
0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7
0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7
0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7
0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7



.

Notice that each of the blocks is just an Erdős–Rényi matrix. The model can be
extended to an arbitrary number of subsets and the values of p and q can be varied
between different subsets. In the more general case, let Qrs denote the probability of
an edge between a node in the rth block and one in the sth block. Then the block

558 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

adjacency matrix will look like

n1 n2 nk





n1 Q11 Q12 · · · Q1k

n2 Q21 Q22

...
...

. . .

nk Qk1 Qk2 Qkk

.

2.9. Undirected Graphs. The focus of our paper is on generating random graphs.
To do this, we generate a random binary and nonsymmetric adjacency matrix A.
However, many studies on real-world data start with undirected graphs with symmetric
matrices of probabilities P . Thus, we would like the ability to generate undirected
graphs! We have three ways to get an undirected graph (and its symmetric adjacency
matrix) from these nonsymmetric adjacency matrices.

The first method has already been mentioned: take the upper or lower triangular
piece of the nonsymmetric matrix A and explicitly symmetrize it (see section 2.4).

The second method builds upon the first. Recall that in many scenarios discussed
in the introduction, we are interested in generating a large number of random graphs
from the same distribution. In this case, we note that a nonsymmetric adjacency
matrix A that results from a symmetric matrix P will give us two samples of a random
graph! One is from the lower-triangular entries, and one from the upper-triangular
entries. This is the easiest and most pragmatic way to proceed if you are generating
multiple samples, as all of the code from this paper directly applies.

The third method proceeds by only generating edges in the upper-triangular region
itself. For instance, in Listing 1, we could easily restrict the for loops to i < j, and
set Aji = 1 whenever we set Aij = 1. This same strategy, however, will become
much more complicated when we look at some of the accelerated generation schemes
in subsequent sections. This is possible, and it is an exercise worth exploring for
those interested, but we deemed the added layer of complexity to be too high for this
particular paper. Besides, the second method above is likely to be more useful in
scenarios where multiple samples are needed and it is also very easy to implement.

3. Efficiently Generating Edges for Erdős–Rényi Graphs: Ball-Dropping and
Grass-Hopping. Recall that in an Erdős–Rényi graph, all nodes have probabil-
ity p of being connected. As previously explained, the simplest way to gener-
ate these edges involves flipping n2 weighted coins, or “coin-flipping.” The prob-
lem with coin-flipping is that it is extremely inefficient when generating an Erdős–
Rényi model of a real-world network. A common characteristic of real-world

Aside 8. We say a matrix is sparse
if the number of zero entries is so
large that it makes sense just to
store information on the locations
of the entries that are nonzero.

networks is that most pairs of edges do not exist.
Just consider how many friends you have on Face-
book or followers on Twitter: It is likely to be an
extremely small fraction of the billions of people
present on these social networks. This makes most
of the resulting adjacency matrices entries equal
to zero, which results in something called a sparse
matrix. Coin-flipping is an expensive procedure

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 559

Fig. 2 A simple illustration of the ball-dropping procedure to generate an Erdős–Rényi graph. “Balls”
are dropped with equal probability, and wherever balls are dropped, we generate an edge in the
adjacency matrix.

for this scenario because it requires a coin flip for every conceivable pair of nodes given
by each entry of the matrix. Our goal is a method that does work proportional to the
number of edges of the resulting network.

3.1. Ball-Dropping. The first accelerated procedure we’ll consider is what we
call ball-dropping. The inspiration behind this method is that we can easily “drop a
ball” into a uniform random entry in a large matrix, which results in a random edge;
see Figure 2. Careful and repeated use of this procedure will allow us to generate
a random adjacency matrix where nonedges are never considered! This solves the
efficiency problem that motivates our accelerated sampling procedures.

The ball-dropping process itself is quite simple:
1. generate a uniform random integer between 1 and n for i;
2. generate a uniform random integer between 1 and n for j.

The probability that we generate any entry i, j is then 1/n · 1/n = 1/n2, which is a
uniform distribution over entries of the matrix. Two questions arise: (i) how many
balls (or edges) do we drop, and (ii) what do we do about duplicates?

Aside 9. The approximate distribu-
tion that results from ignoring du-
plicate ball drops may still be useful.
This choice induces a slightly dif-
ferent model. If these differences
are unlikely to be relevant to the de-
sired use, such as testing system per-
formance, then these approximate
models are a great choice. Making
this judgment requires care in un-
derstanding the impact.

The solution to question (i) can be resolved
by binomial random variables. The number of
balls that we want to drop is given by the number
of edges we will generate in an Erdős–Rényi graph.
Recall that each edge or entry in Aij is the result
of a random, independent coin flip or Bernoulli
trial. The total number of edges is the number
of successes in these coin flips, which is exactly
what a binomial random variable describes. Thus,
the number of edges in an Erdős–Rényi graph is a
binomial random variable with n2 trials and prob-
ability p of success. Many standard programming
libraries include routines for sampling binomial
random variables, which makes finding the number of balls to drop an easy calculation.

That leaves question (ii): what do we do about duplicate ball drops? Suppose the
sample from the binomial distribution specifies m edges. Each ball drop is exactly the

560 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 2 A simple code to generate an Erdős–Rényi random graph by ball dropping

import random # random.randint(a,b) gives a uniform int from a to b

import numpy as np # numpy is the Python matrix package

"""

Generate a random Erdos-Renyi graph by ball-dropping. The input is:

n: the number of nodes

p: the probability of an edge

The result is a list of directed edges.

Example:

ball_drop_er(8,0.25) # 8 node Erdos-Renyi with probability 0.25

"""

def ball_drop_er(n,p):

m = int(np.random.binomial(n*n,p)) # the number of edges

edges = set() # store the set of edges

while len(edges) < m:

the entire ball drop procedure is one line, we use python indices in 0,n-1 here

e = (random.randint(0,n-1),random.randint(0,n-1))

if e not in edges: # check for duplicates

edges.add(e) # add it to the list

return list(edges) # convert the set into a list

procedure described above and we make no provisions to avoid duplicate entries. One
strategy would be to ignore duplicate ball drops. While this is expedient, it samples
from a different distribution over graphs than Erdős–Rényi does, since less than m
unique edges will likely be generated. The alternative is to discard duplicate ball drops
and continue dropping balls until we have exactly m distinct entries. This method
gives the correct Erdős–Rényi distribution, and Listing 2 implements this procedure.
This procedure returns the edges of a random graph instead of the adjacency matrix
to support the sparse use case that motivates our accelerated study.

Proof that this procedure exactly matches the Erdős–Rényi description. Above we
asserted that this procedure actually generates an Erdős–Rényi graph where each edge
i, j occurs with probability p. This is easy to prove and is well known, although proofs
can be difficult to find. We follow the well-written example by Moreno et al. (2014).
In order for an edge i, j to occur, it must do so after we have picked m, the number of
edges from the binomial. Thus,

(3.1) Prob[Aij = 1] =
n2∑

m=0

Prob[Aij = 1 | A has m edges] · Prob[A has m edges].

The first term, Prob[Aij = 1 | A has m edges], is equal to m/n2 because we are
sampling without replacement. The second term Prob[A has m edges] is exactly a
binomial distribution. Hence,

Prob[Aij = 1] =

n2∑

m=0

(m/n2) ·
(
n2

m

)
pm(1− p)n

2−m

= (1/n2)

n2∑

m=0

m

(
n2

m

)
pm(1− p)n

2−m

︸ ︷︷ ︸
= expectation of binomial

= (1/n2) · n2p = p.(3.2)

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 561

Fig. 3 An illustration of grass-hopping. The idea with grass-hopping is that we can sample geometric
random variables to move between the coin flips that produce edges (the heads) directly and
skip over all the tails.

The downside with this method is that we do not have a precise runtime because
the algorithm continues to generate edges until the number of unique edges is exactly
m. We analyze this case further in section 3.3.

3.2. Grass-Hopping. The second accelerated method we present is what we have
chosen to call grass-hopping. Note that in the real-world case, there will be many coin
flips that come up as “no edge” repeatedly. The essence of the idea is that we wish to
“grass hop” from edge to edge as we conceptually (but not actually) flip all n2 coins in
the coin-flipping method. Ideally, we’d like to “hop” over all of these “no edge” flips
as illustrated in Figure 3. Is such a task possible?

Indeed it is. For a Bernoulli random variable with probability p, the number of
consecutively failed trials can be derived from a geometric random variable (see more
on these below). More specifically, a geometric random variable models the number of
trials needed to obtain the next success in a series of coin flips with fixed probability.
Thus, by sampling a geometric random variable, we can “grass hop” from success
to success and skip over all of the failed trials. Put more algorithmically, we first
generate a geometric variable to “hop” to and determine the index of the first edge,
then generate a geometric variable for the next gap until a subsequent edge, and repeat
this process until we have “hopped” past all the pairs of nodes. A code implementing
this idea is given in Listing 3. Note that because the number of trials is limited to n2,
we stop sampling once the sum of our geometric random variables is greater than n2.

This idea and method are also known, but not commonly described in the context
of graph generation (and we still encounter many individuals unaware of it!). We
discuss some of the history in section 3.4, where the core idea is traced back to Pascal
and Fermat, and to the 1960s in terms of modern terminology. We first learned of
it while studying the source code for the Boost Graph Library implementation of
Erdős–Rényi graph generation (Siek, Lee, and Lumsdaine, 2001), and the first reference
in terms of graphs dates to the 1980s (Devroye, 1986).

Some Useful Properties of Geometric Random Variables. A geometric ran-
dom variable is a discrete random variable parameterized by the value p, which is the
success probability of the Bernoulli trial. Let X be a geometric random variable with
probability p, the probability distribution function Prob[X = k] = (1− p)k−1p. Note
that this is just the probability that a coin comes up tails k − 1 times in a row before
coming up heads in the last trial. The expected value of X is 1/p. A straightforward
calculation shows the variance to be 1−p

p2 . Geometric random variables are a very useful

tool and more discussion can be found in a probability textbook such as (Grinstead
and Snell, 2012).

562 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 3 A simple code to generate an Erdős–Rényi random graph by grass-hopping

import numpy as np # numpy is the Python matrix package and np.random.geometric

is a geometric random variate generator

"""

Generate a random Erdos-Renyi graph by grass-hopping. The input is:

n: the number of nodes

p: the probability of an edge

The result is a list of directed edges.

Example:

grass_hop_er(8,0.25) # 8 node Erdos-Renyi with probability 0.25

"""

def grass_hop_er(n,p):

edgeindex = -1 # we label edges from 0 to n^2-1

gap = np.random.geometric(p) # first distance to edge

edges = []

while edgeindex+gap < n*n: # check to make sure we have a valid index

edgeindex += gap # increment the index

src = edgeindex // n # use integer division, gives src in [0, n-1]

dst = edgeindex - n*src # identify the column

edges.append((src,dst))

gap = np.random.geometric(p) # generate the next gap

return edges

Proof that grass-hopping is correct. The proof that grass-hopping is correct is
essentially just the result that the geometric random variable models the gaps between
successes. However, in the interest of exposition, we present a proof that Prob[Aij =
1] = p explicitly. In the adjacency matrix of the graph, the probability that the i, j
cell will have an edge can be calculated by adding the probabilities of all sequences of
hops that land on that cell. Let ` be the index of the i, j cell in the linear order from
0 to n2 − 1 used in the code. The probability that Aij = 1 is then the probability
that the sequence of hops lands on ` or, equivalently, is simply a series of geometric
random variables whose sum is equal to `+ 1. (Here, we have an off-by-one change
because the indices range from 0 to n2 − 1, but the sums of gaps range from 1 to n2.)

From the total probability theorem, the probability that an edge will be generated
is the sum of the probabilities of all length-k hop paths where k goes from 1 to `+1:

(3.3)
Prob[A` = 1] = Prob[A` = 1 in 1 hop] + Prob[A` = 1 in 2 hops] + · · ·

+ Prob[A` = 1 in `+ 1 hops].

There are a number of ways to land on index l by k hops. For example, here are two
different length k = 4 hops landing on index l = 13:

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Let q = 1− p. Notice that the probability of the first path is

(q2p)︸ ︷︷ ︸
hop 1

(q2p)︸ ︷︷ ︸
hop 2

(q3p)︸ ︷︷ ︸
hop 3

(q3p)︸ ︷︷ ︸
hop 4

= q10p4.

The probability of the second path is (p)(q3p)(qp)(q6p) = q10p4. The fact that these
two are equal is not a coincidence. In fact, the probability of a hop path with k hops

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 563

landing on (`+1) is the same for any such path! There are
(
`

k−1
)

such paths, and so the

overall probability of a hop path with k hops landing on (`+ 1) is
(
`

k−1
)
q`−k+1pk−1p,

where again q = 1 − p. We see this formally by observing that any hop path is a
series of geometric random variables, each with distribution Prob[X = x] = qx−1p.
Furthermore, all hop paths with the same number of hops have the same probability of
occurring because any sequence of k geometric random variables will be an arrangement
of (`− k + 1) q’s and k p’s, where we will assert that the last letter is a p. Thus, the
number of length-k hop paths can be generated using binomial coefficients for the
number of ways to arrange (`− k + 1) q’s and k − 1 p’s.

On substituting these binomial coefficient probability expressions into (3.3),

(3.4) Prob[A` = 1] =
∑`+1
k=1

(
`

k−1
)
q`−k+1pk−1

︸ ︷︷ ︸
binomial expansion of (p+ q)`

· p = p.

Notice we are left with the binomial expansion of (p+ q)` = 1 multiplied by p.

The runtime of this procedure is exactly O(E), where E is the number of edges
output, because for each instance of the loop, we generate one distinct edge. (This
assumes a constant-time routine to generate a geometric random variable and an
appropriate data structure to capture the results.)

3.3. Comparing Ball-Dropping to Grass-Hopping with Coupon Collectors.
Both ball-dropping and grass-hopping produce the correct distribution, but our next
question concerns their efficiency. For grass-hopping, this is easy. For ball-dropping,
note that we need to drop at least m balls to get m edges. However, we haven’t yet
discussed how many duplicate entries we expect. Intuitively, if n is very large and p is
small, then we would expect few duplicates. Our goal is a sharper analysis. Specifically,
how many times do we have to drop balls in order get exactly m distinct edges?

This is a variation on a problem called the coupon collector problem; see (Aigner
et al., 2010; Diaconis and Holmes, 2002; Dawkins, 1991) for additional discussion. The
classic coupon collector problem is that there are m coupons that an individual needs
to collect in order to win a contest. Each round, the individual receives a random
coupon with equal probability. How many rounds do we expect before the individual
wins? A closely related analysis to what we present shows that we expect the game to
run for m logm rounds.

In our variation of the coupon collector problem, we must find the expected
number of draws needed to obtain m unique objects (these are edges) out of a set of
n2 objects (these are entries of the matrix), where we draw objects with replacement.
This can be analyzed as follows based on a post from math.stackexchange.com (Yu,
2012), or following simple extensions in the reference texts above.

Let X be the random variable representing the number of draws needed to obtain
the mth unique object. Let Xi be a random variable representing the number of trials
needed to obtain the ith unique object given that i−1 unique objects have already been
drawn. Then, E[X] = E[X1]+E[X2]+· · ·+E[Xm]. Each random variable Xi is geomet-
rically distributed with p = 1− i−1

n2 because the probability of drawing a new object is
simply the complement of the chance of drawing an object that has already been drawn.

Using the expected value of a geometric random variable, we obtain E[Xi] = n2

n2−i+1 .

Thus, E[X] =
∑m
i=1

n2

n2−i+1 . This can be rewritten in terms of harmonic sums. The
harmonic sum, Hn, is defined as the sum of the reciprocals of the first n integers:
Hn =

∑n
i=1

1
n . Consequently, E[X] = n2(Hn2 −Hn2−m). The harmonic partial sums

can be approximated as follows: Hn =
∑n
i=1

1
i ≈ log(n + 1) + γ (Pollack, 2015).

math.stackexchange.com

564 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Fig. 4 Left: the number of random draws that the ball-dropping and grass-hopping procedures must
make as a function of p, normalized by the expected number pn2. Right: the same data, but
zoomed into the region where p < 0.1. For this figure, n = 1000, and we show the 1% and
99% percentiles of the data in the region. The orange line plots the expected ratio 1

p
log(1

1−p
).

Aside 10. The Euler–Mascheroni
constant, γ, is approximately
0.57721.

This approximation is derived from the left-hand
Riemann sum approximation for the integral of∫ n
1

1
x dx. The difference between the Riemann

sum, which represents the harmonic sum, and
the integral, is the Euler–Mascheroni constant, γ,
limn→∞

∑n
k=1

1
k −

∫ n
1

1/x = γ. After substituting in this approximation, the expected
number of draws, E[X], simplifies to n2[log(n2) − log(n2 − m)]. To find a better
expression, we need a value of m. Recall that m is sampled from a binomial whose
expectation is n2p. Using m = n2p simplifies the expression to E[X] = n2 log 1

1−p =

mp−1 log 1
1−p . Thus, the extra work involved is p−1 log 1

1−p . In Problem 1, we show

that p−1 log 1
1−p ≥ 1 with a removable singularity at p = 0.

Consequently, ball-dropping always takes more random samples than grass-hopping.
The difference between these two becomes considerable as p grows larger, as shown in
Figure 4.

Large Values of p. At this point, we should make the following observation.
There is little reason to run ball-dropping once p gets large. This is for two reasons.
First, if p is any value like 0.1, then we would expect 0.1n2 “edges,” in which case we
might as well do coin-flipping because it takes almost the same amount of time, so
we generally expect p to scale like O(1/n) or 1/nγ for γ < 1, such as γ = 1/2. In the
models we will consider, however, there are often cases where p does get large in small
regions. Once p > 0.5, then we actually expect most edges to be present in the graph,
in which case it’s more computationally efficient to use ball-dropping to determine
which edges are missing instead of which edges are present.

3.4. A Historical Perspective on Leap-Frogging, Waiting Times, and the Geo-
metric Method. The core mathematical idea underlying what we call “grass-hopping”
is a relationship between the geometric distribution and repeated Bernoulli trials.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 565

The essence of these ideas is classical and applications of the idea were used by Fer-
mat and Pascal in some of their early correspondence about probability. See, for
instance, the discussions presented on the problem of points (Grinstead and Snell,
2012, p. 30); an English translation of their correspondence is available from the
website https://www.york.ac.uk/depts/maths/histstat/pascal.pdf, whose translations
are from (Smith, 2012; David, 1962); and a direct explanation of the hidden geometric
distribution in their arguments is given in (Hald, 2003, pp. 55–56).

Aside 11. The idea underlying what
we call “grass-hopping” has various
names in the literature including
“leap frog,” “waiting times,” or “the
geometric method.” We ask that
our term “grass-hopping” be used
when these ideas are used in the
context of generating graphs from
matrices of probabilities.

While the fundamental mathematics may be
classical, the idea of using a geometric distribu-
tion to hop through the probabilities has been
known since the 1960s (Fan, Muller, and Rezucha,
1962). That particular article called it a “leap
frog” procedure. Subsequent books on sampling
complex probability distributions also discussed
this idea (Devroye, 1986). More generally, this
style of analysis is called waiting time analysis in
the probability literature. This methodology seeks
to understand the distributions between events;
the discussion in (Dawkins, 1991) draws a number of further connections between the
topics we have presented in this section, including waiting time viewpoints on the
coupon collector problem in which the geometric distribution also arises.

In the context of random graph generation, it is our experience that these insights
are still not widely known nor always widely implemented—despite being mentioned
over 30 years ago by Devroye (1986) and then again over a decade ago by Batagelj and
Brandes (2005), where it was called a geometric method. More recently, Hagberg and
Lemons (2015) discussed the idea and simply describe it as sampling from a waiting
time distribution.

4. Chung–Lu and Stochastic Block Models: Unions of Erdős–Rényi Graphs.
Thus far, we have only studied fast methods for Erdős–Rényi graphs. The same
techniques, however, apply to Chung–Lu and stochastic block model graphs as well,
because these probability matrices are unions of Erdős–Rényi blocks. This is immediate
for the stochastic block model because that model defines a set of small regions. For
instance, it is easy to use our Erdős–Rényi subroutines to create a two block stochastic
block model as the following code illustrates:

""" Generate edges for a stochastic block model with two blocks.

n1 and n2 are the sizes of the two blocks and p is the within group

probability and q is the between group probability.

Example: sbm(20,15,0.5,0.1) # 20 nodes in group 1, 15 nodes in group 2, ...

"""

def sbm2(n1,n2,p,q):

edges = grass_hop_er(n1,p) # generate the n1-by-n1 block

edges.extend([(i+n1,j+n1) for i,j in grass_hop_er(n2,p)]) # n2-by-n2 block

edges.extend([(i,j+n1) for i,j in grass_hop_er(max(n1,n2),q) if i < n1 and j < n2])

edges.extend([(i+n1,j) for i,j in grass_hop_er(max(n1,n2),q) if i < n2 and j < n1])

return edges

This program has a runtime that scales with the number of edges in the graph.
For Chung–Lu graphs, the situation is slightly more intricate. The example Chung–

Lu probability matrix P from section 2.7 has 8 nodes, 16 different probabilities, and
64 total entries in the probability matrix. It turns out that the number of distinct
probabilities is given by the number of distinct degrees. That example had four distinct

https://www.york.ac.uk/depts/maths/histstat/pascal.pdf

566 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

degrees: 4, 3, 2, 1. Since the probability of each matrix entry is Pij = didj/total-degree
(where total-degree =

∑
i di is just a constant), then if there are t distinct degrees, we

will have t2 distinct probabilities in P . This corresponds with t2 Erdős–Rényi blocks.
This can be justified most easily if the vector of degrees d is sorted. Let d[1] be the
first degree in sorted order and d[2] be the next, and so on. Then the entire vector is

(4.1) d = [d[1] d[1] · · · d[1]︸ ︷︷ ︸
n1 times

d[2] d[2] · · · d[2]︸ ︷︷ ︸
n2 times

· · · d[t] d[t] · · · d[t]︸ ︷︷ ︸
nt times

].

It does not matter if the vector is sorted in increasing or decreasing order, and many
of the values of ni may be 1. Let ρ = total-degree. The resulting matrix P now has a
clear block Erdős–Rényi structure:

(4.2) P =

n1 n2 nt





n1
d[1]d[1]
ρ

d[1]d[2]
ρ · · · d[1]d[t]

ρ

n2
d[2]d[1]
ρ

d[2]d[2]
ρ

...
...

. . .

nt
d[t]d[1]
ρ

d[t]d[2]
ρ

d[t]d[t]
ρ

.

We leave an implementation of this as a solved exercise at the conclusion of this paper.
(Note that a very careful implementation can use

(
t
2

)
Erdős–Rényi blocks.)

There is another grass-hop-like algorithm for sampling Chung–Lu graphs described
in Miller and Hagberg (2011), which avoids the block Erdős–Rényi structure using
a rejection sampling based technique. There is an elegant analysis that shows this
algorithm is efficient for sparse Chung–Lu graphs that we encourage interested readers
to review.

Direct Ball-Dropping for Chung–Lu and Stochastic Block Models. It turns out
that there are equivalent procedures to ball-dropping for both Chung–Lu and and
stochastic block models. We’ve deferred these to the problem section (Problems 3
and 6) where we explain some of the intuition behind the differences and some of the
advantages and disadvantages in the procedures. Both methods need to deal with
the same type of duplicate entries that arise in ball-dropping for simple Erdős–Rényi
models; however, this setting is far more complicated as the different probability values
can result in regions where there will be many duplicates. These can be discarded
to easily generate a slightly biased graph, which is what is done in the Graph500
benchmark, for example (Murphy et al., 2010). On the other hand, the number
of Erdős–Rényi blocks grows quadratically for both models:

(
t
2

)
for Chung–Lu and

k2 for the block model. Thus, in the case where there is a large number of blocks,
there are some nontrivial considerations as to when grass-hopping is preferable to
ball-dropping. As an example, Hagberg and Lemons (2015) shows a technique that
generalizes Chung–Lu and enables efficient sampling in this scenario.

5. Fast Sampling of Kronecker Graphs via Grass-Hopping. As far as we are
aware, a ball-dropping procedure or a coin-flipping procedure was the standard method
to sample a large Kronecker graph until very recently. Ball-dropping methods often
generate many duplicate edges in hard to control ways (Groër, Sullivan, and Poole,

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 567

2011), as we illustrate in section 5.1. In practice, these duplicates were often ignored
to generate approximate distributions that were usable in many instances (Murphy
et al., 2010). As previously mentioned, coin-flipping could never scale to large graphs.
This situation changed when Moreno et al. (2014) showed that a “small” number of
Erdős–Rényi blocks were hiding inside the structure of the Kronecker matrix.

We will walk through a new presentation of these results that makes a number
of connections to various subproblems throughout discrete mathematics. The key
challenge is identifying the entries of the matrix where the Erdős–Rényi blocks occur.
This was simple for both Chung–Lu and the stochastic block model, but it is the key
challenge here.

5.1. The Problem with Ball-Dropping. The reason that ball-dropping was the
standard way to generate a Kronecker graph for so long is that it is an extremely easy
implementation because of the recursive Kronecker structure. In ball-dropping, we
sample a single entry proportional to the entries of K ⊗K ⊗ · · · ⊗K. Consider the
example where K = [0.8 0.6

0.4 0.2],

(5.1) K ⊗K =




aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd


 =




0.64 0.48 0.48 0.36
0.32 0.16 0.24 0.12
0.32 0.24 0.16 0.12
0.16 0.08 0.08 0.04


 .

The probability that we pick any edge is then

1

(a+ b+ c+ d)2
K ⊗K =




0.16 0.12 0.12 0.09
0.08 0.04 0.06 0.03
0.08 0.06 0.04 0.03
0.04 0.02 0.02 0.01




or more generally
K∑
ij Kij

⊗ K∑
ij Kij

⊗ · · · ⊗ K∑
ij Kij

.

Although it seems like a complicated process to sample an edge with this probability,
the repeated structure of the Kronecker products makes it easy. Recall for this example
that

(5.2) K ⊗K =

[
a ·K b ·K
c ·K d ·K

]
=

[
0.8 ·K 0.6 ·K
0.4 ·K 0.2 ·K

]
.

The idea that makes ball-dropping easy is that we can sample from this matrix by
drawing twice from the entries of K. The first draw gets us one of the four regions
0.8K, 0.6K, 0.4K, 0.2K, and the second draw picks the entry inside this region. To
describe this formally, it helps to look at the matrix K/

∑
ij Kij = [0.4 0.3

0.2 0.1] which
is the normalized version of K such that the sum of the entries is 1 and each entry
represents the probability of picking that entry. Drawing an entry means picking (1, 1)
with probability 0.4, picking (1, 2) with probability 0.3, and so on. Suppose the two
draws are (1, 2) and (1, 1). The edge that this gives us is (3, 1), which has probability
0.12. The probability that we drew (1, 2) was 0.3, and then the probability we drew
(1, 1) was 0.4. Their product is exactly 0.12. Listing 4 provides an implementation
of the standard ball-dropping procedure for sampling a Kronecker graph where we
drop (

∑
ij Kij)

k edges. This value represents the expected number of edges in the
overall graph. If this result is unexpected, see the solution of Problem 13 for more
information.

568 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 4 A standard, but wrong, ball-dropping method for sampling a Kronecker
graph

import numpy as np

"""Generate a single edge sampled from the

Kronecker matrix distribution where

* p = vec(K)/sum(K) is a flattened 1d array

for the normalized initiator matrix with

probability values that sum to 1,

* n is the matrix-dimension of p, and

* k is the kronecker power.

Example:

ball_drop_kron_edge([0.4,0.2,0.3,0.1],2,3)

"""

def ball_drop_kron_edge(p, n, k):

R=0; C=0;

offset = 1; n2 = n*n

for i in range(k):

sample from K* as 1 to n^2

ind = np.random.choice(n2, 1, p=p)[0]

convert to row, col index

row = ind % n; col = ind // n

R += row * offset

C += col * offset

offset *= n

return (R,C)

import math

"""Generate a ball-dropped sample of a

Kronecker graph. The input K is the

Kronecker initiator matrix and k

is the number of levels.

Example:

K = [[0.8,0.6],[0.4,0.2]]

ball_drop_kron_wrong(K, 3)

"""

def ball_drop_kron_wrong(K, k, nedges=-1):

if nedges < 0:

use the expected number of edges in K

nedges = int(math.pow(np.sum(K), k))

edges = set()

normalize to probability distribution

n = len(K) # and vectorize by cols

Ksum = sum(v for ki in K for v in ki)

p = [K[i][j]/Ksum for j in xrange(n)

for i in xrange(n)]

keep dropping while we need more edges

while len(edges) < nedges:

edges.add(ball_drop_kron_edge(p,n,k))

return edges

However, the implementation in Listing 4 is unfortunately wrong—not because of
a bug in the code, but because of a subtle logic error. For the problem K = [0.99 0.6

0.4 0.2],
k = 3 we generated 10,000,000 samples of the graph and computed the empirical
probabilities of finding each edge. The raw numbers are in the 0.09 to 0.001 range,
and so we scale the probabilities by 10:

(5.3)

.92 .56 .56 .34 .56 .34 .34 .21

.37 .19 .23 .11 .23 .11 .14 .07

.37 .23 .19 .11 .23 .14 .11 .07

.15 .08 .08 .04 .09 .05 .05 .02

.37 .23 .23 .14 .19 .11 .11 .07

.15 .08 .09 .05 .08 .04 .05 .02

.15 .09 .08 .05 .08 .05 .04 .02

.06 .03 .03 .02 .03 .02 .02 .01

.67 .49 .49 .34 .49 .34 .33 .22

.36 .20 .24 .13 .24 .13 .15 .08

.36 .24 .20 .13 .24 .15 .13 .08

.16 .09 .09 .04 .10 .05 .05 .03

.36 .24 .24 .15 .20 .13 .13 .08

.16 .09 .10 .05 .09 .04 .05 .03

.16 .10 .09 .05 .09 .05 .04 .03

.07 .04 .04 .02 .04 .02 .02 .01

scaled true probabilities scaled empirical probabilities.

These two arrays should be equal. What this means is that a common and straight-
forward implementation of the ball-dropping procedure samples from a different
distribution over edges. (Note that this is not an artifact of our choice of the total
number of edges as a constant compared with a true sample of the correct number of
edges; the result is essentially unchanged even if we sample from the true distribution
for the number of edges.) While it is easy to illustrate evidence of the problem,
articulating the reason for the problem is another matter. We explain the subtle origin
of this problem in more detail and propose a corrected ball-dropping implementation,
in section 5.9, after we show how to use grass-hopping to sample from the correct
distribution.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 569

aaa ddd aab

abb aad

abd

bbb

bdd

bbd add

Fig. 5 For a Kronecker graph with a 2 × 2 initiator matrix K = [0.99 0.5
0.5 0.2] =

[
a b
b d

]
that has been

“⊗-powered” three times to an 8 × 8 probability matrix (see (2.5)) the marked cells illustrate
the regions of identical probability that constitute an Erdős–Rényi piece. Here, we have used
symmetry in K to reduce the number of regions.

5.2. Kronecker Graphs as Unions of Erdős–Rényi. And why grass-hopping is
hard! You might be wondering what makes this problem hard once we demonstrate
that Kronecker graphs are unions of Erdős–Rényi regions. Looking at the matrix P
from section 2.6 shows that there are some repeated probabilities. (Figure 5 shows
a guide to where the probabilities are the same.) However, it seems as if they are
scattered and not at all square like they were in the Chung–Lu and stochastic block
model cases. A larger example in Figure 6 shows what a single region looks like for a
64-by-64 matrix. This seems to imply that it is extremely difficult to take advantage of
any Erdős–Rényi subregions. Moreover, it is unclear how many such regions there are.
If there are many such regions that are all small, then it will not help us to sample
each region quickly (even if we could!).

We are going to address both of these questions: (i) How many Erdős–Rényi
regions are there? and (ii) How can each region be identified? More specifically, let the
initiator matrix K be n-by-n, and let k be the number of Kronecker terms, so there
are nk nodes in the graph. In the remainder of section 5, we provide the following in
answer to our questions:

• Question (i). There are
(
k+n2−1

k

)
regions, which is asymptotically O(kn

2−1).
This is important because it means that the number of regions grows more
slowly than the number of nodes nk, enabling us to directly enumerate the
set of regions and keep the procedure efficient (section 5.3).

• Question (ii). The regions are easy to identify in a multiplication table view
of the problem and the regions have a 1-1 correspondence with length-k
nondecreasing sequences of elements up to n2 (section 5.5).

• Question (ii). We can randomly sample in the multiplication table view by
unranking multiset permutations (section 5.6).

• Question (ii). We can map between the multiplication table view and the
repeated Kronecker products via Morton codes (section 5.7).

5.3. The Number of Erdős–Rényi Regions in a Kronecker Matrix. Consider
the result of taking a Kronecker product of a matrix K with itself. In the 2-by-2 case
with K =

[
a b
c d

]
,

(5.4) K ⊗K =




aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd


 .

570 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

abcdab

Fig. 6 For a Kronecker graph with a 2-by-2 initiator matrix K =
[
a b
c d

]
that has been “⊗-powered”

six times (k = 6) to an 64-by-64 probability matrix, the marked cells illustrate one Erdős–Rényi
piece that corresponds to the probability abcdab.

Note that all combinations of symbols a, b, c, d occur in the Kronecker product. This
result holds generally. Consequently, we can identify a length-k string of the symbols
a, b, c, d with each entry of P = K ⊗ k terms. . . ⊗K. If K is n-by-n, then there are (n2)k

such strings. The feature we are trying to exploit here is that the string aba results in
the same probability as aab and baa, and hence we want to count the number of these
distinct probabilities.

An appropriate mathematical object here is the multiset. In a multiset, we have
a set of items along with a multiplicity, where the order of items is irrelevant. So
the strings aab and aba would both correspond to the multiset where a occurs twice
and b occurs once. The cardinality of this multiset is 3. Consequently, the number of
unique probabilities in K ⊗ k terms. . . ⊗K is at most the number of distinct multisets
we can derive from the n2 symbols in K, where each multiset has cardinality k. The
phrase at most is important here. It is possible for two distinct multisets to have
the same probability. For instance, if a = 0.2, b = 0.3, c = 0.1, d = 0.6, then ab = cd
and there would be fewer regions with distinct probability. In this section, we seek
to upper-bound the number of these regions in the worst case and so we focus our
attention on scenarios where these additional repeat structures do not occur.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 571

A famous and well-known result in counting follows. Recall that
(
n
k

)
is the

number of distinct sets of cardinality k that can be drawn from a set of n items. The
generalization to multisets is called “multichoose” and

(5.5)

((
n

k

))
= the number of multisets of cardinality k with n items

=

(
n+ k − 1

k

)
.

The right-hand side of this can be derived from a stars and bars argument; see, for
instance, Wikipedia or a textbook in discrete math such as (Stanley, 1986).

Consequently, there are at most
((
n2

k

))
=
(
k+n2−1

k

)
Erdős–Rényi regions in the

probability matrix for a Kronecker graph.
Recall that for large networks, we are expecting the network to be sparse, and so

we expect the number of edges generated to be about the same as the number of nodes.
This expression is worrisome because there are nk nodes in a Kronecker graph and so
we’d like there to be fewer Erdős–Rényi regions than there are nodes. If this isn’t the
case, then just looking at all regions would result in more work than we would do in
generating edges within each region.

Aside 12. We use big-O notation to
understand what happens for large
values of k when n is considered a
fixed constant.

We now show three results that will guarantee
that there are fewer Erdős–Rényi regions than
nodes of the graph for sufficiently large values
of k. The first result is that there are at most
(e+ 1)k regions for a large enough k, which gives
our result when e+ 1 ≤ n. The second is that if
n = 2 or n = 3 there are at most 2k or 3k regions

when k ≥ 10. The third is that
(
n2+k−1

k

)
is O(kn

2−1) asymptotically, which means
that the number of regions grows asymptotically much more slowly than the number
of nodes.

Result 1. From the Taylor expansion of ex with x positive, we have that ex > xk

k! for

any k. Letting x = k and rearranging our equation results in k! > (ke)k. Furthermore,

we know
(
n
k

)
=
∏k−1
i=0 n− i/k! ≤ nk

k! . Combining the lower bound on k! into this

equation yields
(
n
k

)
≤ (enk)k. Substituting the expression for the number of regions

yields
(
k+n2−1

k

)
≤ (e(k+n

2−1)
k)k. Once k ≥ e(n2 − 1), we have at most (e+ 1)k regions.

Result 2. For n = 2, we will show by induction that
(
k+n2−1

k

)
≤ 2k when k

becomes large. Note
(
k+n2−1

k

)
=
(
k+n2−1
n2−1

)
, so when k = 7,

(
k+3
3

)
= 120, 2k = 128,

and 120 < 128. For our inductive step we must show that our inequality holds true
for k + 1, assuming it holds true for k. Substituting k + 1, we need to show that(
k+4
3

)
≤ 2k+1. Expanding the left-hand side,

(
k + 4

3

)
=

(k + 4)(k + 3)(k + 2)

3!

=
k + 1

k + 1
· (k + 4)(k + 3)(k + 2)

3!

=
k + 4

k + 1

(
k + 1

3

)

≤ 2 · 2k = 2k+1.

The last statement assumes k ≥ 2, so k+4
k+1 ≤ 2.

572 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

The same strategy works for n = 3 to show that
(
k+n2−1

k

)
≤ 3k for n = 3 when k

becomes large. When k = 10,
(
k+8
k

)
= 43758, 3k = 59049, and 43758 < 59349. For

our inductive step we must show that our inequality holds true for k + 1, assuming it
holds true for k. Substituting k+ 1 into our inequality, we need to show

(
k+9
8

)
≤ 3k+1,

or equivalently
∏9

i=2 k+i

8! ≤ 3k · 3. Multiplying the left-hand side by k+1
k+1 allows us to

use our inductive assumption that
(
k+8
8

)
≤ 3k. Thus, we obtain k+9

k+1 ≤ 3 which is true
when k ≥ 3.

Result 3. Finally, we note that
(
k+n2−1

k

)
= (k+n2−1)!

k!(n2−1)! = O((k+n
2−1)!
k!) because n is

a constant. If we use the simple upper bound (k+n2−1)!
k! ≤ (k + n2 − 1)n

2−1 and then
take logs, we have (n2 − 1) log(k + n2 − 1). The concavity of log gives the subadditive
property log(a + b) ≤ log(a) + log(b) when a, b ≥ 2. So (n2 − 1) log(k + n2 − 1) ≤
(n2 − 1) log(k) + (n2 − 1) log(n2 − 1). Exponentiating now yields O(kn

2−1).
We now have the results that show there are sufficiently few Erdős–Rényi regions

in a Kronecker graph, and so our grass-hopping procedure could successfully be applied
to each region. This resolves question (i). We now turn to question (ii).

5.4. The Strategy for Grass-Hopping on Kronecker Graphs: Multiplication
Tables and Kronecker Products. In order to find the Erdős–Rényi regions in a
Kronecker graph easily, we need to introduce another structure: the multiplication

table. Let v be the vector
[
a b c d

]T
, then

(5.6) v ⊗ v =




av
bv
cv
dv


 .

This object can be reshaped into a matrix called a multiplication table,

(5.7) reshape(v ⊗ v) =




aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd


 .

Note that what we call a multiplication table here is just a rank-1 matrix, vvT . The
reason this is often called a multiplication table is that it is exactly the multiplication
table you likely learned in elementary school when a = 1, b = 2, c = 3, d = 4, . . . , where
the result has all pairs of products between the elements. The reshape function in this
case takes a length-n2 vector and assembles it into a matrix by column. For those
accustomed to the mixed-product property of Kronecker products, this result is just
vec(vvT) = v ⊗ v.

The vec operator is another useful tool that converts a matrix into a vector by
appending the column vectors of a matrix together:

(5.8) vec

([
a b
c d

])
=




a
c
b
d


 .

In fact, the vec and reshape functions here are inverses: vec takes a matrix and makes
it into a vector by appending columns, and reshape takes a vector and makes it into a
matrix by dividing it into columns.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 573

To get some sense of where this is going, compare (5.7) to (5.4) and notice that
all the same entries occur, but they are just reorganized.

The idea with a multiplication table is that we can immediately generalize to
using more than just the product of two numbers:

(5.9) reshape(v ⊗ v ⊗ v) =

daa dab dac dad

dba dbb dbc dbd

dca dcb dcc dcd

dda ddb ddc ddd

caa cab cac cad

cba cbb cbc cbd

cca ccb ccc ccd

cda cdb cdc cdd

baa bab bac bad

bba bbb bbc bbd

bca bcb bcc bcd

bda bdb bdc bdd

aaa aab aac aad

aba abb abc abd

aca acb acc acd

ada adb adc add

.

More generally, a k-dimensional multiplication table arises from

(5.10) reshape(v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
k times

),

where now reshape takes a length-nk vector and produces an n× n× · · · × n︸ ︷︷ ︸
k times

table.

Here’s how the multiplication table view helps us: it is easy to find the Erdős–Rényi
regions in a multiplication table! Consider the entry aab. This occurs in cells (1, 1, 2),
(1, 2, 1), and (2, 1, 1). These are exactly the three permutations of the multiset with
two 1’s and one 2.

However, that result does not do us any good without the following fact: the
entries of the k-dimensional multiplication table with v = vec(K) can be mapped 1–1 to
entries of the repeated Kronecker product matrix K ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸

k times

. More specifically,
we show that

(5.11) vec(K ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
k times

) = Mn,k vec(K)⊗ vec(K)⊗ · · · ⊗ vec(K)︸ ︷︷ ︸
k times

,

where Mn,k is a permutation matrix based on a Morton code. This mapping is
illustrated in Figures 7 and 8. We will explain exactly what is in those figures in
subsequent sections, but we hope they help provide a visual reference for the idea of
mapping between the Kronecker information and the multiplication table. Note that
a quick analysis of (5.7) and (5.4) and various generalizations show the existence of
a permutation matrix between these two. Working out a few examples like this by
hand was exactly how we got started on the theory. The key insight of the proof is
the characterization of this permutation through Morton codes.

These two results, together with the small number of regions result from section 5.3,
enable the following strategy to grass hop on an Kronecker graph efficiently: Grass
hop independently in each region of the the multiplication table and then map the
multiplication table entries back to the Kronecker matrix. More programmatically,

574 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

""" Generate a Kronecker graph via grass-hopping. The input K is the

Kronecker initiator matrix and the the value k is the number of levels.

Example: grass_hop_kron([[0.99,0.5],[0.5,0.2]], 3) """

def grass_hop_kron(K,k):

n = len(K) # get the number of rows

v = [K[i][j] for j in xrange(n) for i in xrange(n)] # vectorize by cols

edges_mult = []

for r in regions(v,k): # for each region of the mult. table

edges_mult.extend(grass_hop_region(r, v)) # get edges in mult. table

edges_kron = []

for e in edges_mult: # map edges from mult. table to kron

edges_kron.append(map_mult_to_kron(e, n))

return edges_kron

The goal of the next three subsections is to write down each of the functions
regions (section 5.5), grass_hop_region (section 5.6), and map_mult_to_kron (sec-
tion 5.7). Once we have these pieces, we will be able to efficiently grass hop through a
Kronecker graph!

5.5. Enumerating All Erdős–Rényi Regions. Recall that, in the worst case, each
of the distinct probabilities that occur in P = K ⊗ k terms. . . ⊗ K can be uniquely
identified with a multiset of size k from a collection of n2 objects (section 5.3). Our
task is to enumerate all of the regions defined by these multisets. Here, we note that
each multiset can be identified with a nondecreasing sequence of length k where the
symbols are 0, 1, . . . , n2 − 1. For instance, when n = 2, k = 3, these sequences are

[0,0,0],
[0,0,1],

[0,0,2],
[0,0,3],

[0,1,1],
[0,1,2],

[0,1,3],
[0,2,2],

[0,2,3],
[0,3,3],

[1,1,1],
[1,1,2],

[1,1,3],
[1,2,2],

[1,2,3],
[1,3,3],

[2,2,2],
[2,2,3],

[2,3,3],
[3,3,3].

Let v = vec(
[
a b
c d

]
) = [a c b d]

T
. The sequence [0, 2, 2] then refers to the probability

v(1)v(3)v(3) = abb.
At this point, we are starting to mix programmatic indexes (0, . . . , n2 − 1) with

the mathematical indices (1, . . . , n2). Our goal is not to be confusing, but rather to
ensure that the discussion in the text matches the programs more precisely from this
point forward.

As justification, we hope it is easy to see that each nondecreasing sequence of length
k corresponds to a multiset of cardinality k. (For instance, [0, 2, 2, 3] corresponds to
one 0, two 2’s, and one 3.) The other direction, that each multiset can be represented
as a nondecreasing sequence, is also straightforward. Given a multiset of elements
from 0 to n2 − 1 with k total elements, place them into a sequence with repetitions
in sorted order. Thus, if we had two 5’s, three 1’s, and one 2, we would obtain the
sequence [1, 1, 1, 2, 5, 5, 5]. This sequence is nondecreasing and so we can do this for
any multiset.

Aside 13. There could be fewer
Erdős–Rényi regions due to addi-
tional structure in the specific choice
of probabilities. From now on, we
assume the worst case scenario that
each multiset corresponds to a dis-
tinct probability.

Thus, we have justified that the length-k non-
decreasing sequences are in 1–1 correspondence
with the Erdős–Rényi regions. We now continue
with the problem of computationally enumerating
nondecreasing sequences.

For remainder of this section, k will represent
the length of the sequence and m will represent
the largest entry + 1 that is valid in the sequence
in order to match the code precisely. In the previ-
ous example, k = 4 and m = 4. Our code for this task is implemented in the subroutine

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 575

Listing 5 Code to update a nondecreasing sequence representing a subregion to the
next nondecreasing sequence

def next_region(cur, m):

k = len(cur)

cur[k-1] += 1 # increment the last element

if cur[k-1] == m: # if there is spill

if len(cur) > 1: # there is an array

cur[0:k-1] = next_region(cur[0:-1],m) # recur on prefix

cur[k-1] = cur[k-2] # update suffix

else:

cur[k-1] = -1 # singleton, no room left!

return cur

""" Generate the set of Erdos-Renyi regions in a Kronecker graph

where v = vec(K), and k = number of levels. Each region gives indices

into v that produce a distinct Erdos-Renyi probability.

Example: regions([0.99,0.5,0.5,0.2],3) """

def regions(v,k):

m = len(v)

rval = []

cur = [0 for _ in xrange(k)] # initialize the regions to zero

while cur[0] != -1:

rval.append(list(cur)) # make a copy

next_region(cur, m)

return rval

regions in Listing 5. It begins with the first sequence [0, 0, 0, 0] and iteratively steps
through all of them via the function next_region.

The function next_region handles scenarios exemplified by the following three
cases:

(5.12)

[0, 1, 1, 2]→ [0, 1, 1, 3] easy,

[1, 3, 3, 3]→ [2, 2, 2, 2] spill,

[3, 3, 3, 3]→ [−1,−1,−1,−1] spill and done.

Recall that Python indexes from 0. This next_region update works by incrementing
the last, or (k–1)th, entry of the sequence to the next value. In the easy case, this
results in [0, 1, 1, 2]→ [0, 1, 1, 3]. In the spill case, we get [1, 3, 3, 3]→ [1, 3, 3, 4]. We
check for these cases by examining the value of this last element again. If it is any value
< m, then we have the easy case and there is nothing left to do. However, if the last
value is equal to m, then we need to handle the spill. In the spill scenario, we recursively
ask for the next nondecreasing sequence for all but the last element. In our example,
this call produces next_update([1, 3, 3], 4), which yields [1, 3, 3]→ [2, 2, 2]. At
this point, cur = [2, 2, 2, 4]. Because the sequence must be nondecreasing, we
set the last element (currently at 4) to be the first value possible. This is given by the
second-to-last element (2). And so, this update produces [1, 3, 3, 3]→ [2, 2, 2, 2]. The
final case is when the array has length 1, and so there is no prefix to update. In this
case, we simply flag this scenario by introducing a −1 sentinel value which propagates
through the array.

Proof that regions and update work. The following is a sketch of a proof that
next_region gives the next region in lexicographic order. First, for arrays of length
1, this is true because at each step we increment the element up until we generate the

576 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

−1 termination symbol. We now inductively assume it is true for arrays of length < k.
When next_region runs on an array of length k, then either we increment the last
element, in which case we have proven the result, or the last element is already n− 1.
If the last element is already n− 1, then we generate the next element in lexicographic
order in the prefix array, which is of length k − 1, and this occurs via our induction
hypothesis. Finally, note that the last element of the updated prefix has the same
value as our suffix.

5.6. Grass-Hopping within an Erdős–Rényi Region in the Multiplication Ta-
ble: Unranking Multiset Permutations. Given an Erdős–Rényi subregion, we now
turn to the problem of how to grass hop within that region in the multiplication
table. Let v be a length-m vector, which is vec(K), and consider the k-dimensional
multiplication table M . The entry (i, j, . . . , l) in the multiplication table is simply
equal to the product v(i)v(j) · · · v(l). In other words,

(5.13) M(i, j, . . . , `) = v(i)v(j) · · · v(`)︸ ︷︷ ︸
k total terms

,

where v(i) is the ith entry in the vector v. Recall from section 5.5 that each Erdős–
Rényi subregion exactly corresponds with a length-k nondecreasing sequence. Let
r be the length-k nondecreasing sequence that labels the current region. In the
multiplication table, this region corresponds to the element

(5.14) M(r1 + 1, r2 + 1, . . . , rk + 1) = v(r1 + 1)v(r2 + 1) · · · v(rk + 1).

(Note that we index the region programmatically, but the vector entries mathematically,
hence the addition of 1.) The locations in the multiplication table in which this Erdős–
Rényi subregion occurs are the distinct permutations of the sequence r. For example,

(5.15)

r = [0, 1, 1, 1]→ [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0],

r = [0, 1, 2, 2]→ [0, 1, 2, 2], [0, 2, 1, 2], [0, 2, 2, 1], [1, 0, 2, 2],

[1, 2, 0, 2], [1, 2, 2, 0], [2, 0, 1, 2], [2, 0, 2, 1],

[2, 1, 0, 2], [2, 1, 2, 0], [2, 2, 0, 1], [2, 2, 1, 0].

All of these entries have exactly the same probability because the multiplication
operation in (5.14) is associative.

Consequently, it is easy to find the regions of the multiplication table that share
the same probability. What is not entirely clear at this point is how we use this
observation with a grass-hopping procedure. In grass-hopping, we move around indices
of the Erdős–Rényi region in hops. How can we hop from element [0, 2, 1, 2] to element
[2, 0, 1, 2]?

The answer arises from a ranking and unranking perspective on combinatorial
enumeration (Bonet, 2008). For a complex combinatorial structure, such as multiset
permutations, we can assign each permutation a rank from 0 to the total number of
objects minus one. Thus, in the second example in (5.15) we have

(5.16)

[0, 1, 2, 2]→ 0,

[0, 2, 1, 2]→ 1,

...

[2, 2, 1, 0]→ 11.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 577

This rank is based on the lexicographic order of the objects. Lexicographic order is
exactly the order you’d expect things to be in based on your experience with traditional
sequences of numbers. The permutation [2, 1, 0, 2] occurs before [2, 2, 0, 1] for the same
reason we say 2102 is before 2201 in order. Unranking is the opposite process. Given an
integer between 0 and the total number of objects minus one, the unranking problem
is to turn that integer into the combinatorial object. Hence,

(5.17) 4
unrank→ [1, 2, 0, 2].

More generally, given the initial sequence r = [0, 1, 2, 2] and any integer between 0 and
11, the unranking problem is to turn that integer into the sequence with that rank in
lexicographic order.

This is exactly what we need in order to do grass-hopping on multiset permutations.
We grass hop on the integers between 0 and the total number of multiset permutations
−1. The total number of multiset permutations is given by the the formula

(5.18)
m!

a1!a2! . . . ak!
,

where ai is the number of times the ith element appears and m is the cardinality
of the multiset. (See the permutation page on Wikipedia for more details.) At a
high level, the unrank algorithm (Listing 6) takes as input a multiset permutation
in nondecreasing form represented as an array, as well as an index or “rank” of the
desired permutation. The algorithm is recursively defined and simply returns the
original array if the input rank is 0 as the base case. In the other case, the algorithm
searches for the first element of the multiset permutation. (The details of this search
are below.) Once it finds the first element, it repeats the search on the remainder of
the sequence after removing that element.

To make this code somewhat efficient, we maintain a counter representation of the
multiset. This counts the number of times each element occurs in the multiset and
keeps a sorted set of elements. For the multiset [0, 1, 2, 2], the counter representation is

(5.19) keys = [0, 1, 2]︸ ︷︷ ︸
sorted elements

and mset =





0 → 1,

1 → 1,

2 → 2.

The functions ndseq_to_counter and counter_to_ndseq convert between the counter
and sequence representations. The function num_multiset_permutations returns the
number of permutations of a given multiset via (5.18). For our example, [0, 1, 2, 2], equa-
tion (5.18) is equal to 12, which matches our direct enumeration in (5.16). The main
algorithm is unrank_mset_counter, which takes as input the counter representation
of the multiset as well as the “rank” index. The objective of unrank_mset_counter
is to find the first element of the permutation in lexicographic order. We examine
the sorted elements in the keys array in order. For each element, we tentatively
remove it by decreasing its count in mset and then we count the number of multiset
permutations with the remaining elements. For our running example, this yields

(5.20) [0, 1, 2, 2]→
starts with 0 and ends with a permutation of [1, 2, 2] = 3,
starts with 1 and ends with a permutation of [0, 2, 2] = 3,
starts with 2 and ends with a permutation of [0, 1, 2] = 6.

578 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 6 Unranking a multiset permutation

unrank takes as input:

- C: a multiset represented by a list

- n: the lexicographic rank to find

and returns the nth permutation of C in

lexicographic order.

#

Examples:

unrank([0,1,1,3], 0) returns [0,1,1,3]

unrank([0,1,1,3], 1) returns [0,1,3,1]

unrank([0,1,1,3], 2) returns [0,3,1,1]

from math import factorial

def ndseq_to_counter(seq):

mset = {}

for c in seq:

get a value with a default

of zero if it isn’t there

mset[c] = mset.get(c,0)+1

return mset, sorted(mset.keys())

def counter_to_ndseq(mset,keys):

seq = []

for k in keys: # keys in sorted order

append k mset[k] times

for v in xrange(mset[k]):

seq.append(k)

return seq

def num_multiset_permutations(mset):

count = factorial(sum(mset.values()))

for k in mset.keys():

count = count//factorial(mset[k])

return count

def unrank_mset_counter(mset,keys,n):

if n==0: # easy if rank == 0

return counter_to_ndseq(mset,keys)

for s in keys: # else find prefix key

mset[s] -= 1 # decrease count of s

determine number of prefixes with s

place = num_multiset_permutations(mset)

if place > n:

then the first element is s

if mset[s] == 0: # remove the key

keys.remove(s) # if the count is 0

suffix = unrank_mset_counter(

mset, keys, n) # recurse!

suffix.insert(0, s) # append s

return suffix

else: # here it does not start with s

mset[s] += 1 # restore the count

n -= place # update search offset

raise(ValueError("rank too large"))

def unrank(seq,n):

mset,keys = ndseq_to_counter(seq)

return unrank_mset_counter(mset,keys,n)

We interpret this output as follows. Let the desired rank be R. There are three
permutations which start with a zero, and they correspond to the first three ranks 0,
1, or 2. So if R < 3, in that case we can recurse and unrank the permutation with
sequence [1, 2, 2] and exactly the same rank R. If the rank is 3, 4, or 5, then the
permutation starts with 1 and we can recurse and unrank the permutation of [0, 2, 2]
with rank R− 3. Finally, if the rank is 6, . . . , 11, then the permutation starts with 2
and we can recurse and unrank the permutation of [0, 1, 2] with rank R − 6. These
recursions yield the suffix that we return.

5.7. Mapping from the Multiplication Table to the Kronecker Graph: Morton
Codes. In this section we prove a novel connection between repeated Kronecker
product graph matrices and Morton codes that was mentioned in (5.11). But first,
some background on Morton codes!

Morton codes or Z-order codes are a neat primitive that arises in a surprising
diversity of applications (Morton, 1966). Relevant details of these applications are
beyond the scope of our tutorial, but they include high-performance computing (Buluç
et al., 2009), database search (Orenstein and Merrett, 1984), and computer graph-
ics (Vinkler, Bittner, and Havran, 2017) (see Wikipedia for additional references).
When Morton codes and Z-order are used in the context of matrices, the terms refer
to a specific way to order the matrix elements when they are represented as a data
array with a single index. Common strategies to accomplish this include row and
column major orders, which order elements by rows or columns, respectively. Morton
codes adopt a recursive, hierarchical pattern of indices. Here are four different ways to

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 579

Listing 7 Grass-hopping in an Erdős–Rényi region of a Kronecker product matrix

import numpy as np # use np.random.geometric for the geometric random variables

grass_hop_region takes as input

- r: the region to be sampled represented by a non-decreasing array

- v: the initiator matrix represented as a n^2-by-1 column vector

and returns a list of edges represented by indexes in mult. table

Example: v = [0.99,0.5,0.5,0.2]; grass_hop_region(regions(v,3)[2], v)

def grass_hop_region(r,v):

p = multtable(r,v) # p is the common prob value of the region

n = num_multiset_permutations(ndseq_to_counter(r)[0]) # total size of region

edges_mult = [] # the initially empty list of edges

i = -1 # starting index of the grass-hopping

gap = np.random.geometric(p) # the first hop

while i+gap < n: # check to make sure we haven’t hopped out

i += gap # increment the current index

edges_mult.append(unrank(r,i)) # add the

gap = np.random.geometric(p) # generate the next gap

return edges_mult

multtable takes as input:

- r: an array with k elements specifying a cell in the multiplication table

- v: the initiator matrix represented as a n^2-by-1 column vector

and returns the value at the specified location in the multiplication table

def multtable(r,v):

final = 1.0

for val in r:

final *= v[val]

return final

organize the 16 values in a 4-by-4 matrix:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15







︸ ︷︷ ︸
Row Major Order

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15







︸ ︷︷ ︸
Column Major Order

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15







︸ ︷︷ ︸
Row Morton Order

0 2 8 10

1 3 9 11

4 6 12 14

5 7 13 15







︸ ︷︷ ︸
Column Morton Order

The name “Z-curve” comes from the description of the row Morton order, which
enumerates the first 2-by-2 block in a “Z” shape and then recursively repeats it in
growing 2-by-2 blocks. For the general Morton code, notice the recursive pattern as
well. We are going to use column Morton orders in this paper.

More formally, a Morton code refers to a specific method, which we now describe,
that is used to generate the linear index from the row and column. It can also refer to
the inverse map, which takes a linear Morton index and produces the row and column
in the matrix. We refer to these as follows:

(5.21)
MortonEncode(i, j)→ I ∈ [0, n2 − 1],

MortonDecode(I)→ (i, j) ∈ [0, n− 1]2.

At this point, we’ve fully switched to programmatic indices since otherwise the
confusion between the codes and the text would become extreme. Matrices and
vectors are now indexed from 0 as well. In the previous 4-by-4 example of the orders,
MortonEncode(1, 2) = 9 and MortonDecode(7) = (3, 1). (Our row and column indices
start at zero if these numbers seem off by one!) The encoding and decoding procedures

580 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

work on bit-strings for the respective numbers. In fact, the procedure is surprisingly
elegant: take the bit-strings for the row and column indices and interleave the digits.
For example, let’s say we want to encode the numbers 1 and 2 into a single value.
First, we convert both numbers into base 2: 1→ 012 and 2→ 102. Next, we interleave
the digits starting from the column:

1 0 0 1

1 0 0 1

The resulting code is 10012 = 9: the desired Morton index. To decode a Morton index
into its row and column numbers, we simply reverse the process. We consider 7 with
it’s base-2 representation 01112 and divide the digits into two groups, alternating every
binary digit:

0 1 1 1

0 1 1 1

This gives a column index of 1 and a row index of 3.
Now, suppose we consider the Morton code as a map between two linear indices:

the column Morton order and the column major order. This is easy to build if we
are given a MortonDecode function because we can quickly move from the row and
column values to the linear index in column major order. (In case this isn’t clear,
given the row r and column c indices, the column major index is r+ cn, where n is the
number of rows of the matrix.) The result is a permutation [0, n2 − 1]→ [0, n2 − 1]:

(5.22)

0→ 0 4→ 2 8→ 8 12→ 10
1→ 1 5→ 3 9→ 9 13→ 11
2→ 4 6→ 6 10→ 12 14→ 14
3→ 5 7→ 7 11→ 13 15→ 15

.

This permutation induces a permutation matrix M :

(5.23)




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.

The essence of our final primitive is that this Morton map translates between the
multiplication table and the Kronecker product, as illustrated in Figure 7. In this case,
we have validated the case of (5.11):

(5.24) vec(K ⊗K)︸ ︷︷ ︸
Kronecker matrix
in column major

= M︸︷︷︸
MortonDecode

to column major

[vec(K)⊗ vec(K)]︸ ︷︷ ︸
linear index

from multiplication table

,

where K is two-by-two. We prove this statement in full generality shortly.
More generally, Morton codes can be defined with respect to any base. We

illustrate a case of (5.11) in Figure 8, where K is 3-by-3 and k = 3. Suppose, in the
multiplication table, we generate an edge at index 477. The value 477 in base 3 is

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 581

(a) Multiplication table (b) Kronecker matrix

aa ba ca da

ab bb cb db

ac bc cc dc

ad bd cd dd







a b c d

a

b

c

d

aa ac ca cc

ab ad cb cd

ba bc da dc

bb bd db dd







002 012 102 112
002

012

102

112

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15







MortonDecode

MortonCode

0 2 8 10

1 3 9 11

4 6 12 14

5 7 13 15







002 012 102 112
002

012

102

112

(c) Indices in
multiplication table

(d) Multiplication table
indices in Kronecker matrix

Morton decoding example:
13→ row 3, column 2

col. 2 row 3

1 0 2 1 1 2

1 1 0 1 2

Fig. 7 The Morton code relationship between the multiplication table (a) and the Kronecker matrix
(b) for k = 2 in the Kronecker product of K = [a cb d]. Our relationship builds on the Morton
decoding transformation from indices in the multiplication table (c) to the reordered entries
that arise in the Kronecker matrix (d). The reordering is the result of a Morton decoding
process where we take an index from the multiplication table, write it in base 2, and then
separate alternating digits into two different indices, one for the row and one for the column.
(Note that these are all 0 indexed.) A larger example is given in Figure 8.

1222003. The resulting MortonDecode is
1 2 2 2 0 0

1 2 0 2 2 0

which gives a column index of 1·32+2·3+0 = 15 and a row index of 2·32+2·3+0 = 24.
Looking up this entry in the Kronecker matrix (Figure 8, upper right) yields a value
of fia. Checking back in the multiplication table (Figure 8, upper left) shows that
entry 477 corresponds to entry fai (a permutation)! (Note that given the base 10
value 477 we can determine its value in the multiplication table by doing a base 9
decode. Indeed, 47710 = 5809, which gives a multiset index of [3, 8, 4] corresponding
to the values v(6) = f, v(9) = i, v(1) = a.)

Returning to the problem of generating a random Kronecker graph, recall that (5.11)
gave us a way of mapping from elements of the multiplication table to elements of the
Kronecker matrix. This relationship, then, provides a computational tool to determine
where an arbitrary element of the multiplication table generated by grass hop region

occurs in the Kronecker matrix itself, providing the final piece of the fast Kronecker
sampling methodology.

The code that maps indices of the multiplication table through Morton codes to
the Kronecker indices is given in Listing 8. This code assumes that (5.11) is correct,
which we will prove in the next section. In the code, the index in the multiplication
table is converted into a single linear index. This conversion is just a base n2 to base
10 conversion. Next, the linear index is MortonDecoded in base n. The decoding
proceeds by assigning the least significant digit to the row index, then the next digit
to the column, the next digit to the row, and so on. The most-significant digit then
goes to the column value.

What remains is the proof that (5.11) is correct, which we tackle in the next
section.

582 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Morton Decode

Morton Encode

iaa iab iac iad iae iaf iag iah iai

iba ibb ibc ibd ibe ibf ibg ibh ibi

ica icb icc icd ice icf icg ich ici

ida idb idc idd ide idf idg idh idi

iea ieb iec ied iee ief ieg ieh iei

ifa ifb ifc ifd ife iff ifg ifh ifi

iga igb igc igd ige igf igg igh igi

iha ihb ihc ihd ihe ihf ihg ihh ihi

iia iib iic iid iie iif iig iih iii

haa hab hac had hae haf hag hah hai

hba hbb hbc hbd hbe hbf hbg hbh hbi

hca hcb hcc hcd hce hcf hcg hch hci

hda hdb hdc hdd hde hdf hdg hdh hdi

hea heb hec hed hee hef heg heh hei

hfa hfb hfc hfd hfe hff hfg hfh hfi

hga hgb hgc hgd hge hgf hgg hgh hgi

hha hhb hhc hhd hhe hhf hhg hhh hhi

hia hib hic hid hie hif hig hih hii

gaa gab gac gad gae gaf gag gah gai

gba gbb gbc gbd gbe gbf gbg gbh gbi

gca gcb gcc gcd gce gcf gcg gch gci

gda gdb gdc gdd gde gdf gdg gdh gdi

gea geb gec ged gee gef geg geh gei

gfa gfb gfc gfd gfe gff gfg gfh gfi

gga ggb ggc ggd gge ggf ggg ggh ggi

gha ghb ghc ghd ghe ghf ghg ghh ghi

gia gib gic gid gie gif gig gih gii

faa fab fac fad fae faf fag fah fai

fba fbb fbc fbd fbe fbf fbg fbh fbi

fca fcb fcc fcd fce fcf fcg fch fci

fda fdb fdc fdd fde fdf fdg fdh fdi

fea feb fec fed fee fef feg feh fei

ffa ffb ffc ffd ffe fff ffg ffh ffi

fga fgb fgc fgd fge fgf fgg fgh fgi

fha fhb fhc fhd fhe fhf fhg fhh fhi

fia fib fic fid fie fif fig fih fii

eaa eab eac ead eae eaf eag eah eai

eba ebb ebc ebd ebe ebf ebg ebh ebi

eca ecb ecc ecd ece ecf ecg ech eci

eda edb edc edd ede edf edg edh edi

eea eeb eec eed eee eef eeg eeh eei

efa efb efc efd efe eff efg efh efi

ega egb egc egd ege egf egg egh egi

eha ehb ehc ehd ehe ehf ehg ehh ehi

eia eib eic eid eie eif eig eih eii

daa dab dac dad dae daf dag dah dai

dba dbb dbc dbd dbe dbf dbg dbh dbi

dca dcb dcc dcd dce dcf dcg dch dci

dda ddb ddc ddd dde ddf ddg ddh ddi

dea deb dec ded dee def deg deh dei

dfa dfb dfc dfd dfe dff dfg dfh dfi

dga dgb dgc dgd dge dgf dgg dgh dgi

dha dhb dhc dhd dhe dhf dhg dhh dhi

dia dib dic did die dif dig dih dii

caa cab cac cad cae caf cag cah cai

cba cbb cbc cbd cbe cbf cbg cbh cbi

cca ccb ccc ccd cce ccf ccg cch cci

cda cdb cdc cdd cde cdf cdg cdh cdi

cea ceb cec ced cee cef ceg ceh cei

cfa cfb cfc cfd cfe cff cfg cfh cfi

cga cgb cgc cgd cge cgf cgg cgh cgi

cha chb chc chd che chf chg chh chi

cia cib cic cid cie cif cig cih cii

baa bab bac bad bae baf bag bah bai

bba bbb bbc bbd bbe bbf bbg bbh bbi

bca bcb bcc bcd bce bcf bcg bch bci

bda bdb bdc bdd bde bdf bdg bdh bdi

bea beb bec bed bee bef beg beh bei

bfa bfb bfc bfd bfe bff bfg bfh bfi

bga bgb bgc bgd bge bgf bgg bgh bgi

bha bhb bhc bhd bhe bhf bhg bhh bhi

bia bib bic bid bie bif big bih bii

aaa aab aac aad aae aaf aag aah aai

aba abb abc abd abe abf abg abh abi

aca acb acc acd ace acf acg ach aci

ada adb adc add ade adf adg adh adi

aea aeb aec aed aee aef aeg aeh aei

afa afb afc afd afe aff afg afh afi

aga agb agc agd age agf agg agh agi

aha ahb ahc ahd ahe ahf ahg ahh ahi

aia aib aic aid aie aif aig aih aii

648 657 666 675 684 693 702 711 720

649 658 667 676 685 694 703 712 721

650 659 668 677 686 695 704 713 722

651 660 669 678 687 696 705 714 723

652 661 670 679 688 697 706 715 724

653 662 671 680 689 698 707 716 725

654 663 672 681 690 699 708 717 726

655 664 673 682 691 700 709 718 727

656 665 674 683 692 701 710 719 728

567 576 585 594 603 612 621 630 639

568 577 586 595 604 613 622 631 640

569 578 587 596 605 614 623 632 641

570 579 588 597 606 615 624 633 642

571 580 589 598 607 616 625 634 643

572 581 590 599 608 617 626 635 644

573 582 591 600 609 618 627 636 645

574 583 592 601 610 619 628 637 646

575 584 593 602 611 620 629 638 647

486 495 504 513 522 531 540 549 558

487 496 505 514 523 532 541 550 559

488 497 506 515 524 533 542 551 560

489 498 507 516 525 534 543 552 561

490 499 508 517 526 535 544 553 562

491 500 509 518 527 536 545 554 563

492 501 510 519 528 537 546 555 564

493 502 511 520 529 538 547 556 565

494 503 512 521 530 539 548 557 566

405 414 423 432 441 450 459 468 477

406 415 424 433 442 451 460 469 478

407 416 425 434 443 452 461 470 479

408 417 426 435 444 453 462 471 480

409 418 427 436 445 454 463 472 481

410 419 428 437 446 455 464 473 482

411 420 429 438 447 456 465 474 483

412 421 430 439 448 457 466 475 484

413 422 431 440 449 458 467 476 485

324 333 342 351 360 369 378 387 396

325 334 343 352 361 370 379 388 397

326 335 344 353 362 371 380 389 398

327 336 345 354 363 372 381 390 399

328 337 346 355 364 373 382 391 400

329 338 347 356 365 374 383 392 401

330 339 348 357 366 375 384 393 402

331 340 349 358 367 376 385 394 403

332 341 350 359 368 377 386 395 404

243 252 261 270 279 288 297 306 315

244 253 262 271 280 289 298 307 316

245 254 263 272 281 290 299 308 317

246 255 264 273 282 291 300 309 318

247 256 265 274 283 292 301 310 319

248 257 266 275 284 293 302 311 320

249 258 267 276 285 294 303 312 321

250 259 268 277 286 295 304 313 322

251 260 269 278 287 296 305 314 323

162 171 180 189 198 207 216 225 234

163 172 181 190 199 208 217 226 235

164 173 182 191 200 209 218 227 236

165 174 183 192 201 210 219 228 237

166 175 184 193 202 211 220 229 238

167 176 185 194 203 212 221 230 239

168 177 186 195 204 213 222 231 240

169 178 187 196 205 214 223 232 241

170 179 188 197 206 215 224 233 242

81 90 99 108 117 126 135 144 153

82 91 100 109 118 127 136 145 154

83 92 101 110 119 128 137 146 155

84 93 102 111 120 129 138 147 156

85 94 103 112 121 130 139 148 157

86 95 104 113 122 131 140 149 158

87 96 105 114 123 132 141 150 159

88 97 106 115 124 133 142 151 160

89 98 107 116 125 134 143 152 161

0 9 18 27 36 45 54 63 72

1 10 19 28 37 46 55 64 73

2 11 20 29 38 47 56 65 74

3 12 21 30 39 48 57 66 75

4 13 22 31 40 49 58 67 76

5 14 23 32 41 50 59 68 77

6 15 24 33 42 51 60 69 78

7 16 25 34 43 52 61 70 79

8 17 26 35 44 53 62 71 80

(c) Indices in multiplication table

(a) Entries of multiplication table

Fig. 8 The connection between the multiplication table and a repeated Kronecker matrix with a 3-by-3
matrix K with vector form v = [a b c d e f g h i]T . This yields a 9 × 9 × 9 multiplication
table and a 27-by-27 matrix of probabilities.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 583

(d) Multiplication table indices in Kronecker matrix

(b) Kronecker matrix

Morton Decode

Morton Encode

Fig. 8 (continued)

584 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 8 Mapping multiplication table indices to row and column indices of the
Kronecker matrix
""" Map a multi-index from the mult. table

table to a row and column in the Kronecker

matrix. The input is:

mind: the multi-index for the mult table

n: the size of the initiator matrix K

Example:

map_mult_to_kron([1,3],2) # = (3,1)

map_mult_to_kron([4,0,7],3) # = (10,11)

"""

def map_mult_to_kron(mind,n):

I = multiindex_to_linear(mind,n*n)

return morton_decode(I,n)

def multiindex_to_linear(mind,n2):

I = 0

base = 1

for i in xrange(len(mind)-1,-1,-1):

I += mind[i]*base

base *= n2

return I

def morton_decode(I,n):

row = 0

rowbase = 1

col = 0

colbase = 1

i = 0

while I > 0:

digit = I%n

I = I // n

if i%2 == 0:

row += rowbase*digit

rowbase *= n

else:

col += colbase*digit

colbase *= n

i += 1

return (row,col)

5.8. The Proof of the Multiplication Table to Kronecker Matrix Permutation.
In this section, we will prove (5.11) via the following theorem.

Theorem 5.1. Let K be an n-by-n matrix and v = vec(K) be the column major
representation of K. Consider an element in the multiplication table

v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
k terms

with index (r1, r2, . . . , rk). Let I be the lexicographic index of the element (r1, . . . , rk).
Then the base n Morton decoding of I provides the row and column indices of an
element in

K ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
k terms

with the same value. If we convert the row and column indices provided by Morton into
a column major index, then we can build a permutation matrix Mn,k in order to write

vec(K ⊗K ⊗ · · · ⊗K︸ ︷︷ ︸
k terms

) = Mn,k(v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
k terms

).

Proof. To state the proof concisely, let K⊗k = K ⊗ k terms. . . ⊗ K and v⊗k be
the same. In the proof, we will just show that the Morton code for I gives the
correct row and column indices for K⊗k. The resulting permutation matrix follows by
converting those row and column indices to a column major index and building the
full permutation matrix. We will prove this statement by induction on the power of
the Kronecker product, k.

Base case. When k = 1, K⊗k = K is simply the initiator matrix. Consequently,
the theorem reads vec(K) = Mn,1v; however, the length-1 Morton code is simply the
row and column indices in column major order, and so this result follows because the
map Mn,1 is the identity.

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 585

Inductive step overview. We will prove our statement inductively by calculating
the new row and column values in two ways: first by recursively defining the row
and column values using a “zooming” argument, and second by applying the Morton
decoding process on a recursively defined lexicographic index, Ik+1. The following
figure gives an illustrative overview of how we will show the result in general.

Multiplication Table Index

Lexicographical Index I

(i, j) row and column location

base N
2 to base 10

“Zooming,” Backward-Mapping

MortonDecode

Inductive step formal. Assume Mn,k correctly maps between v⊗k and K⊗k. More
specifically, this means we can find the row and column indices (Rk, Ck) for a given
index of the multiplication table (r1, r2, . . . , rk).

Let (r1, r2, . . . , rk, rk+1) be the multiplication table index for an entry of v⊗k+1,
then notice that (r1, r2, . . . , rk) corresponds to an index in v⊗k. By assumption, the
Morton code correctly gives the correct row and column values in K⊗k: Rk and Ck.
Note that the structure of the K⊗k+1 is

(5.25)




K1,1K
⊗k K1,2K

⊗k · · · K1,nK
⊗k

K2,1K
⊗k K2,2K

⊗k · · · K2,nK
⊗k

...
...

. . .
...

Kn,1K
⊗k Kn,2K

⊗k · · · Kn,nK
⊗k


 ,

so the row value for (r1, r2, . . . , rk, rk+1) is

(5.26) Rk+1 = Rk + (rk+1 mod n)nk.

The reasoning for this is as follows. The size of the previous iteration’s matrix is
nk. When we incorporate the new value rk+1, we move to one of the n2 areas (of
dimension nk by nk) of the Kronecker matrix, where (r1, r2, . . . , rk) is the suffix. The
specific row of the region can be found by simply taking the last multiplication table
index rk+1 mod n, which corresponds to looking up the row index for rk+1 in column
major order. The same reasoning can be used to find the column index, jk+1:

(5.27) Ck+1 = Ck +
⌊rk+1

n

⌋
nk.

By taking the floor of rk+1 divided by n, we know the column index of the value
for rk+1. We call this procedure backward-mapping or zooming because we use the
inductive step to zoom into the right cell.

Now we must show that the Morton decoding process arrives at the same updated
row and column values. First we will calculate the lexicographic index of our length-
(k+1) multiplication table index. A given multiplication table index (r1, r2, . . . , rk) has
a lexicographic index Ik. When we move to the next Kronecker power, we incorporate
the value rk+1. We can determine the new lexicographic index Ik+1 using Ik and rk+1:

(5.28) Ik+1 = Ik + rk+1(n2)
k
.

This relationship arises because the lexicographic index can be calculated by converting
our multiplication table index from base n2 to base 10. The last value rk+1 will occupy

the place value at the front of the linearized index, i.e., (n2)
k
.

586 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Now we must show that Morton decoding correctly maps Ik+1 to Rk+1 and Ck+1.
Using the division and remainder theorem on rk+1 divided by n results in

(5.29) rk+1 =
⌊rk+1

n

⌋
n+ (rk+1 mod n).

Substituting this representation into (5.28) yields

(5.30) Ik+1 =
⌊rk+1

n

⌋
n2k+1 + (rk+1 mod n)n2k + Ik.

Thus, the last two digits that Morton decoding will find here are b rk+1

n c and (rk+1 mod
n), because these correspond to the final terms in a base n representation of Ik+1.
Consequently, Morton decoding of Ik+1 is equivalent to decoding Ik and appending
the digits (rk+1 mod n) and b rk+1

n c to the beginning of the new row and column
digit-strings, respectively. This completes our proof because (5.30) gives precisely the
row and column values found in (5.26) and (5.27).

Note that this proof actually suggests a more straightforward way to generate
the row and column indices of the Kronecker matrix entries; see Problem 14 for more
information.

5.9. Fixing Ball-Dropping Using What We’ve Learned. Recall that at the start
of this section, we showed that a simple implementation of a ball-dropping procedure
yielded the wrong distribution over edges for the Kronecker graph. The error in
the implementation is subtle. First, we can easily check that the implementation of
ball-dropping for a single edge is correct. The problem is that after the first edge is
selected, subsequent edges are drawn from a different distribution because we ignore
duplicate edges! For some quick intuition to help understand what happens, note that
we are less likely to see duplicate samples on low-probability edges and more likely
to see duplicates on high-probability edges. Also, in the data from (5.3) we saw the
probability of low-probability edges increase and high-probability edges decrease.

Let us illustrate the precise issue in a simplified setting. Suppose we wanted to use
ball-dropping to generate two distinct samples from the set {a, b, c, d}, where we have
probabilities of 0.8, 0.6, 0.4, 0.2 of sampling each one, respectively. In ball-dropping, we
generate each sample with probability 0.4, 0.3, 0.2, 0.1 (respectively). Say we sample
a first, with probability 0.4. Because we demand distinct samples, the probability
of sampling b next is 0.3/(0.3 + 0.2 + 0.1) = 0.5. This gives a joint probability of
0.4 ·0.5 = 1/5 = 3/15. Each of these scenarios is listed in Table 1. By taking a sum over
these possibilities, we end up with effective sampling probabilities 0.36, 0.30, 0.22, 0.12,
not 0.4, 0.3, 0.2, 0.1 as desired.

We should mention that if all the probabilities are equal, as in the Erdős–Rényi
case, then this problem does not occur. Working out the same type of probability
table as above quickly confirms this intuition: This is why ball-dropping worked for
the Erdős–Rényi graph. This insight suggests a strategy to adapt ball-dropping to
correctly sample a Kronecker graph:

1. Determine the number of edges within each Erdős–Rényi region inside the
Kronecker graph by sampling a binomial distribution.

2. Ball-drop edges, identify the Erdős–Rényi region they correspond to, and keep
an edge if there are edges remaining for that region.

The only detail of this implementation we need to prescribe is how to determine the
Erdős–Rényi region from the ball-dropped edges. This is unexpectedly easy, and
we simply record the choices made within the Kronecker graph at each step; this

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 587

Table 1 A probability table describing what happens when we use ball-dropping to sample two distinct
items from the four items a, b, c, d with probabilities 0.8, 0.6, 0.4, 0.2. The effective probability
is the sum of all entries in the column divided by two, which gives the probability that we
will see that item in the output. This table shows that even in a highly simplified setting,
we would sample from a slightly different distribution using ball-dropping.

a b c d
Probability of first choice 0.4 0.3 0.2 0.1

Joint probability a and then – 3/15 2/15 1/15
b and then 12/70 – 6/70 3/70
c and then 4/40 3/40 – 1/40
d and then 4/90 3/90 2/90 –

Effective probability 0.36 0.30 0.22 0.12

corresponds to the multiset for an Erdős–Rényi region. The overall procedure is imple-
mented in Listing 9, which uses some of the other routines we’ve developed throughout
this section. Note the only difference between ball_drop_kron_mset (Listing 9) and
ball_drop_kron_edge (Listing 4) is that ball_drop_kron_mset records the informa-
tion for the multiset corresponding to the edge. Because the edge corresponds with
a permutation of the multiset information, we sort the multiset to uniquely identify
each region. (As a technical detail, Python cannot use lists to index into a dictionary
structure, and so we convert them into tuples.)

If we repeat the experiment from section 5.1 (K = [0.99 0.6
0.4 0.2] , k = 3, and 10,000,000

random trials), then we arrive at the following scaled edge probabilities arrive:

(5.31)

.924 .560 .560 .339 .560 .339 .339 .206

.373 .187 .226 .113 .226 .113 .137 .069

.373 .226 .187 .113 .226 .137 .113 .069

.151 .075 .075 .038 .091 .046 .046 .023

.373 .226 .226 .137 .187 .113 .113 .069

.151 .075 .091 .046 .075 .038 .046 .023

.151 .091 .075 .046 .075 .046 .038 .023

.061 .030 .030 .015 .030 .015 .015 .008

.924 .560 .560 .339 .560 .339 .339 .206

.373 .187 .226 .113 .226 .113 .137 .068

.373 .226 .187 .113 .226 .137 .113 .068

.151 .075 .075 .038 .091 .046 .046 .023

.373 .226 .226 .137 .187 .113 .113 .069

.151 .075 .092 .046 .075 .038 .046 .023

.151 .091 .075 .046 .075 .046 .038 .023

.061 .031 .030 .015 .030 .015 .015 .008

scaled true probabilities scaled empirical probabilities
from Listing 9

(The elements that are different are flagged in red.) Note that we need to show results
to three decimal places, which is actually the 4th decimal place because of the scaling
for display, to see any differences between the two. Using additional trials show that
these values converge as we would expect.

The downside to this implementation relates back to the overall issue with ball-
dropping: we might have to resample for a long time until we satisfy all the requirements
for all regions. This situation is worsened for sampling from Kronecker graphs because
the probabilities are highly imbalanced. To measure this, we instrumented the code
to record the number of ball drops we need sample a single edge for a few problems
as k varies. The results are given in Table 2. These data show that we often need
hundreds of extra extra ball drops per edge and that this number exhibits very high
standard deviations. Together, these results suggest that the corrected ball dropping
implementation is unlikely to be efficient for sampling a Kronecker graph as k grows.

588 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Listing 9 A correct implementation of ball-dropping to sample a Kronecker graph
that first picks the number of edges in each Erdős–Rényi region and continues sampling
until no region has any edges left

"""Correctly generate a ball-dropped

sample of a Kronecker graph.

Example: K = [[0.8,0.6],[0.4,0.2]]

ball_drop_kron_good(K, 3)

"""

def ball_drop_kron_good(K, k):

normalize to probability distribution

n = len(K) # and vectorize by columns

Ksum = sum(v for ki in K for v in ki)

p = [K[i][j]/Ksum for j in xrange(n)

for i in xrange(n)]

for each ER region, sample a binomial

to get the num of edges in the region

redges = {}

for r in regions(p,k):

pr = multtable(p,v) # get region prob

nr = num_multiset_permutations(

ndseq_to_counter(r)[0])

redges[tuple(r)] = # sample the binom

int(np.random.binomial(nr,pr))

edges = set() # the full set of edges

num_edges = sum(redges.values())

while len(edges) < num_edges:

i,j,ms = ball_drop_kron_mset(p, n, k)

ms.sort() # sort to order the multiset

ms = tuple(ms) # convert to a tuple

if redges[ms] > 0: # check if we

if (i,j) not in edges: # need the edge

edges.add((i,j))

decrease edges remaining in region

redges[ms] -= 1

return edges

"""Generate a single edge along with the

corresponding Erdos-Renyi region.

Example:

ball_drop_kron_mset([0.4,0.2,0.3,0.1],2,3)

"""

def ball_drop_kron_mset(p, n, k):

R=0; C=0;

offset = 1; n2 = n*n

mset = [0 for _ in range(k)]

for i in range(k):

ind = np.random.choice(n2, 1, p=p)[0]

mset[i] = ind

update row and col value

row = ind % n; col = ind // n

R += row * offset

C += col * offset

offset *= n

return (R,C,mset)

Table 2 The mean and standard deviation, over 100 trials, of the number of ball drops required in
Listing 5.9 for each edge of the final sample. As k grows, there are more drops required.
These results show that the corrected ball-dropping implementation is unlikely to be efficient
for sampling a Kronecker graph. Because of the high standard deviation, these results are
not overly reliable.

Problem Drops Size k
per edge 6 8 10 12 14 16[

0.99 0.5
0.5 0.2

]
Mean 35 55 56 67 147 107
St. dev. 96 188 87 79 496 172[

0.8 0.6
0.4 0.2

]
Mean 36 80 61 133 175 166
St. dev. 90 356 132 710 488 458

The space of hybrid grass-hopping and ball-dropping solutions, however, could be
fruitful.

6. Problems and Pointers. We have achieved our major goal, which was to
establish a new link between Morton codes and repeated Kronecker products, and
have described how that result is useful in efficiently generating a Kronecker graph.
While we have not focused on producing the most efficient implementation possible
(see Problem 14 for a nontrivial improvement), we did focus on a procedure that does
only a small amount of additional work per edge and is faster than the ball-dropping
procedures that have dominated the experimental landscape.

Our work builds strongly upon the work of Moreno et al. (2014) and highlights
new connections to classic problems in combinatorics including ranking and unrank-

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 589

ing (Bonet, 2008). Indeed, the ranking and unranking perspective has a tremendous
amount to offer for ever more complicated models of graphs. For instance, the original
specification of the Erdős–Rényi graph due to Erdős and Rényi (1959) was a random
choice of graphs with n vertices and m edges. It is straightforward to sample such
an object from the ranking and unranking perspective. To each graph we associate a
binary-string of length

(
n
2

)
, which represents the strictly upper-triangular region of an

adjacency matrix. This binary-string must have exactly m ones. To randomly generate

such a string, first generate a random number between 0 and
((n

2)
m

)
− 1, then unrank

that random number in lexicographic order. This procedure follows by testing whether

the first number is 0 or 1. There are
((n

2)−1
m

)
choices where the leading value is a 0 and

((n
2)−1
m−1

)
choices where it is a 1, so we test whether our number is larger than

((n
2)−1
m

)
and

then assign the first digit. This process can be repeated to deterministically generate
the string. Note that when straightforwardly implemented, as in Problem 10, this
procedure is not at all efficient compared with alternatives, yet there are a tremendous
number of effective sampling strategies that seek ways to optimize away inefficiencies;
see, for instance, (Bonet, 2008) for some existing ideas to improve the speed of these
processes. Our point is that a general view of ranking and unranking might open some
analytical doors that would not have otherwise been opened.

We conclude our paper by (i) reviewing the major timelines of the literature, (ii)
pointing out some strongly related work that falls outside of our specific scope, and
(iii) providing some follow-up problems.

6.1. Recap of the Major Literature.
• 1959: Erdős–Rényi paper (Erdős and Rényi, 1959) with m fixed edges
• 1959: Gilbert’s model for G(n, p) (Gilbert, 1959)
• 1962: Paper on grass-hopping or leap-frogging for sequential trials in statis-

tics (Fan, Muller, and Rezucha, 1962)
• 1983: Stochastic block model proposed (Holland, Laskey, and Leinhardt, 1983)
• 1986: Grass-hopping for Erdős–Rényi graphs (Devroye, 1986)
• 2002: Chung–Lu graphs proposed (Chung and Lu, 2002)
• 2004: RMAT, Kronecker predecessor, proposed (Chakrabarti, Zhan, and

Faloutsos, 2004)
• 2005: Kronecker graphs proposed (Leskovec et al., 2005)
• 2005: Grass-hopping for Erdős–Rényi graphs, again (Batagelj and Brandes,

2005)
• 2011: Grass-hopping-like procedure proposed for Chung–Lu (Miller and Hag-

berg, 2011)
• 2013: Observation on Erdős–Rényi blocks in Kronecker (Moreno et al., 2014)

6.2. Pointers to More Complex Graph Models. The models we consider here
are not considered state of the art, although they are often used as synthetic examples
due to their simplicity and ubiquity. In this section, we provide a few references to
more intricate models that could be considered state of the art. We’ve attempted
to limit our discussion to the most strongly related literature, since a full survey of
random graph models is well beyond our scope.

BTER: Kolda et al. (2014) The block two-level Erdős–Rényi (BTER) graph models a
collection of Erdős–Rényi subgraphs akin to the diagonal blocks of stochastic
block models. However, it also includes a degree constraint that better models
real-world networks.

590 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

mKPGM: Moreno et al. (2010) Another model of interest is called the mixed Kro-
necker product graph model (mKPGM), which is a generalization of the Kro-
necker model but allows for more variance as you might expect in real-world
populations of networks. The main difference in this model compared to the
standard Kronecker model that we have explored is that it is based on realizing
an adjacency matrix at stages of the Kronecker product calculation. This cor-
responds to increasing or zeroing probabilities in the final Kronecker product,
e.g., P = A` ⊗ (K ⊗ · · · k − ` terms · · · ⊗K), where A` is a realization of
an `-level Kronecker graph with K.

Random Kernel Graph: Bollobás, Janson, and Riordan (2007) This models a gen-
eral, but specific, structure for P , where Pi,j = min(f(vi, vj)/n, 1) and f is
a kernel function with a few special properties, and vi = i/n for each vertex.
The Chung–Lu model can be expressed in this form and there is an efficient
sampling algorithm due to Hagberg and Lemons (2025).

Multifractal Networks: Palla, Lovász, and Vicsek (2010) These are a continuous gen-
eralization of the Kronecker matrix models we consider in this paper and they
generate a network based on a function P (x, y) where x and y are in [0, 1],
but also where P (x, y) is the result of repeated convolution of a generator
(akin to repeated Kronecker products; see the referenced paper for details).
With the resulting measure P (x, y), we draw random coordinates vi for each
node in [0, 1] and generate a graph where Pij = P (vi, vj).

There are strong relationships among these classes of models. We conjecture that this
idea of grass-hopping could be extended to all of these random graph models and,
more generally, to all random graph generation mechanisms that have a small number
of parameters and computationally efficient strategies to compute the probability of
a given edge. (For an nk vertex Kronecker graph, there are n2 parameters and each
probability can be computed in k steps.)

6.3. Problems. For the following problems, we have posted solutions or solution
sketches in the supplementary material to this SIAM paper as well as to the version of
the paper on arXiv: https://arxiv.org/pdf/1709.03438v1.pdf. However, we encourage
readers to solve them independently!

Problem 1 (easy). When we were comparing ball-dropping to grass-hopping for
sampling Erdős–Rényi graphs, we derived that an approximate count of the number of
edges used in ball-dropping is m log(1/(1− p))/p. First show that the term log(1/(1−
p))/p has a removable singularity at p = 0 by showing that limp→0 log(1/(1−p))/p = 1.
Second, show that log(1/(1− p))/p > 1 if p > 0.

Problem 2 (easy). Implement a grass-hopping scheme for Chung–Lu as de-
scribed in section 4.

Problem 3 (easy). While we considered coin-flipping, ball-dropping, and grass-
hopping for Erdős–Rényi, we did not do so for some of the other models. Of these,
the Chung–Lu ball-dropping procedure is perhaps the most interesting. Recall how
ball-dropping works for Erdős–Rényi. We determine how many edges we expect the
graph to have. Then we drop balls into random cells until we obtain the desired number
of edges. The way we dropped the balls was such that every single entry of the matrix
was equally likely. The procedure for Chung–Lu works in a similar manner, but the
selection of each cell is not equally likely. For simplicity, we describe it using the exact
expected number of edges.

https://arxiv.org/pdf/1709.03438v1.pdf

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 591

Note that the expected number of edges in a Chung–Lu graph is just

E


∑

i

∑

j

Aij


 =

∑

i

∑

j

E[Aij] =
∑

i

di,

where we have used the result of (2.7) in order to introduce di.
Let m =

∑
i di. We will ball drop until we have m edges.

The goal of each ball drop is to pick cell (i, j) with probability didj/
∑
k,l dkdl. This

forms a valid probability distribution over cells. The difference to (2.6) is subtle, but
meaningful. Also note that each di is an integer. Thus, to sample from this distribution,
what we do is build a list where entry i occurs exactly di times. If we draw an entry
out of this list, then the probability of drawing i is exactly di/

∑
k dk. Your first task

is to show that if we draw two entries out of this list, sampling with replacement, the
probability of the two drawn entries being i and j is

didj/
∑

k,l

dkdl.

This sampling procedure is easy to implement: Just build the list and randomly pick an
entry!

Your problem is then
• show that the probability we computed above is correct;
• implement this procedure on the computer akin to the Python codes we’ve seen;
• prepare a plot akin to Figure 2 for the Chung–Lu graphs as you vary the

properties of the degree distribution.

Problem 4 (easy). In section 4, we wrote a short code using grass_hop_er to
generate a two-block stochastic block model (2SBM). In that short code, we generated
larger Erdős–Rényi blocks for the off-diagonal blocks then necessary and only included
edges if they fell in a smaller region. This inefficiency, which is severe if n1 � n2, can
be addressed for a more general grass_hop_er function.

Implement grass_hop_er for an m × n region and rewrite the short two-block
stochastic block model to use this more general routine to avoid the inefficiency.

Problem 5 (easy). Suppose that you have the following function implemented:

""" Generate a general stochastic block model where the input is:

ns: a list of integers for the size of each block (length k).

Q: a k-by-k matrix of probabilities for the within block sizes. """

def sbm(ns, Q)

Describe how you could implement a program to generate a Chung–Lu graph that makes
a single call to sbm.

Problem 6 (medium, partially solved). Implement and evaluate a ball-dropping
procedure for the stochastic block model. To determine the number of edges, use the
result about the number of edges in an Erdős–Rényi block and apply it to each block.
To run ball-dropping, first pick a region based on the probability of Q (hint: you can
do this with binary search and a uniform random variable), then pick from within that
Erdős–Rényi block.

Problem 7 (medium). Write an implementation to generate a stochastic block
model graph using grass_hop_er as a subroutine.

592 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

Problem 8 (easy). Extend all the programs in this paper and give them proper
input validation so that they throw easy-to-understand errors if the input is invalid.
(For instance, Erdős–Rényi graphs need the p input to be a probability.)

Problem 9 (medium). In this paper, we calculated the number of Erdős–Rényi
regions for a Kronecker graph assuming that the probabilities in K were nonsymmetric
and there is no other structure in the coefficients that reduces the number of Erdős–
Rényi regions. However, in Figure 5, we showed the Erdős–Rényi regions where the
matrix K is symmetric. Determine a tight closed-form expression for the number of
Erdős–Rényi regions when K is symmetric, again assuming no additional structure in
the coefficients that would reduce the number of Erdős–Rényi regions.

Problem 10 (hard). Implement the algorithm described in section 6 to generate
an Erdős–Rényi graph with exactly m entries by unranking binary-strings of length(
n
2

)
.

Problem 11 (easy). Implement a simple change to ball_drop_er that will gen-
erate nonedges when p > 0.5 and filter the list of all edges. Our own solution to this
involves adding four lines (we used a few pieces of python syntactic sugar, but the
point is that it isn’t a complicated idea). Compare the runtimes of this approach with
the standard ball-dropping approach.

Problem 12 (medium). In section 5.3, we showed that the number of subregions

is on the order of O(kn
2−1). There are many ways to arrive at this result. Using

Stirling’s approximation for combinations, find a different way to count the number of
subregions. Stirling’s approximation is log n! = n log n− n+ 1

2 log n+ 1
2 log(2π) + εn.

Problem 13 (easy). In section 5.1, we claimed that the number of expected
edges in the Kronecker graph with matrix K and k levels was (

∑
ij Kij)

k. Prove this
result.

Problem 14 (medium). Note that in the proof of Theorem 5.1, we began by
showing that the multiset region could be easily decoded into the row and column indices
of the entry in the Kronecker matrix. Adapt our programs to use this insight to avoid
computing the linear multiindex index returned by multiindex_to_linear.

Problem 15 (easy). When we were unranking multisets, we would compute the
number of multisets that started with a digit as the prefix and then enumerate the
number of such sets. We used this to identify the first digit of the unranked set. Double
check that we didn’t miss any possibilities by summing.

Problem 16 (easy). Determine the number of operations involved in each of the
components of the procedure to generate a Kronecker graph.

Problem 17 (research level with appropriate generality). Another view of Theo-
rem 5.1 is that we have a permutation induced by two different representations of the
same number. More specifically, the multi-index representation is in base n2, which we
convert to base n, and then we interleave digits to build a row and column representa-
tion. Hence, there are two equivalent representations of the number in base 10. This
hints at a far more general set of permutations based on this type of digit interchange
and base conversion. As an example, the stride permutation can be expressed as follows:
represent a number from [0, n2 − 1] in base n. This gives a two-digit representation.
Swap the digits and convert back to [0, n2 − 1]. This gives a permutation matrix that
exactly corresponds with what is called a stride permutation, which is closely related to
the matrix transpose and the difference between row and column major orders. The

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 593

research problem is to generalize these results. Possible directions include the following
questions: can any permutation matrix be expressed in this fashion? If not, can you
exhibit one and characterize the class of permutations possible? A solution may have
applications in terms of implementing circuits to compute permutations that arise in
many common signal processing applications including cell phone signals (Mansour,
2013). One strategy to employ is to look at this problem from the perspective of group
theory and study whether these digit interchanging permutations are generators of the
symmetric group.

Acknowledgments. We thank Sebastian Moreno for mentioning the original
problem during his thesis defense and providing an excellent starting point, as well
as Jennifer Neville. Along the way, we received helpful feedback from Eric Chi and
C. Seshadhri. Finally, we wish to thank all of our research team and especially Caitlin
Kennedy for a careful reading.

REFERENCES

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, Search in power-law
networks, Phys. Rev. E, 64 (2001), https://doi.org/10.1103/physreve.64.046135. (Cited on
p. 556)

M. Aigner, G. M. Ziegler, K. H. Hofmann, and P. Erdos, Proofs from the Book, Springer, 2010.
(Cited on p. 563)

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999),
pp. 509–512, https://doi.org/10.1126/science.286.5439.509. (Cited on p. 553)

V. Batagelj and U. Brandes, Efficient generation of large random networks, Phys. Rev. E, 71
(2005), art. 036113, https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.036113. (Cited
on pp. 565, 589)

B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs,
Random Structures Algorithms, 31 (2007), pp. 3–122, https://doi.org/10.1002/rsa.20168.(Cited
on p. 590)

B. Bonet, Efficient algorithms to rank and unrank permutations in lexicographic order, in AAAI
Workshop on Search in AI and Robotics, 2008, pp. 142–151. (Cited on pp. 576, 589)

A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, Parallel sparse matrix-
vector and matrix-transpose-vector multiplication using compressed sparse blocks, in Proceedings
of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures, SPAA
’09, ACM, New York, 2009, pp. 233–244, https://doi.org/10.1145/1583991.1584053. (Cited on
p. 578)

D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining, in
Proceedings of the 2004 SIAM International Conference on Data Mining, 2004, pp. 442–446,
https://doi.org/10.1137/1.9781611972740.43. (Cited on pp. 555, 589)

F. Chung and L. Lu, Connected components in random graphs with given expected degree sequences,
Ann. Comb., 6 (2002), pp. 125–145, https://doi.org/10.1007/PL00012580. (Cited on p. 589)

F. N. David, Games, Gods and Gambling: The Origins and History of Probability and Statistical
Ideas from the Earliest Times to the Newtonian Era, Hafner Publishing Company, 1962. (Cited
on p. 565)

T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006, https://doi.org/
10.1137/1.9780898718881. (Cited on p. 554)

B. Dawkins, Siobhan’s problem: The coupon collector revisited, Amer. Statist., 45 (1991), pp. 76–82,
http://www.jstor.org/stable/2685247. (Cited on pp. 563, 565)

L. Devroye, Nonuniform Random Variate Generation, Springer-Verlag, 1986, http://luc.devroye.
org/rnbookindex.html. (Cited on pp. 561, 565, 589)

P. Diaconis and S. Holmes, A Bayesian peek into Feller volume I, Sankhyā Ser. A, 64 (2002),
pp. 820–841. (Cited on p. 563)

S. Dill, R. Kumar, K. S. Mccurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins, Self-
similarity in the web, ACM Trans. Internet Tech., 2 (2002), pp. 205–223. (Cited on p. 556)

P. Erdős and A. Rényi, On random graphs I, Publ. Math., 6 (1959), pp. 290–297. (Cited on
pp. 554, 589)

M. D. Ernst, Permutation methods: A basis for exact inference, Statist. Sci., 19 (2004), pp. 676–685,
https://doi.org/10.1214/088342304000000396. (Cited on p. 552)

https://doi.org/10.1103/physreve.64.046135
https://doi.org/10.1126/science.286.5439.509
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.036113
https://doi.org/10.1002/rsa.20168
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1007/PL00012580
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1137/1.9780898718881
http://www.jstor.org/stable/2685247
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
https://doi.org/10.1214/088342304000000396

594 ARJUN S. RAMANI, NICOLE EIKMEIER, AND DAVID F. GLEICH

C. T. Fan, M. E. Muller, and I. Rezucha, Development of sampling plans by using sequential
(item by item) selection techniques and digital computers, J. Amer. Statist. Assoc., 57 (1962),
pp. 387–402. (Cited on pp. 565, 589)

R. A. Fisher, “The coefficient of racial likeness” and the future of craniometry, J. Royal Anthropol.
Inst. Great Britain and Ireland, 66 (1936), pp. 57–63, http://www.jstor.org/stable/2844116.
(Cited on p. 552)

G. W. Flake, S. Lawrence, and C. L. Giles, Efficient identification of web communities, in
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’00, ACM, New York, 2000, pp. 150–160, https://doi.org/10.1145/347090.
347121. (Cited on p. 557)

J. E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, New York, 2003,
https://doi.org/10.1007/b97336. (Cited on p. 555)

E. N. Gilbert, Random graphs, Ann. Math. Statist., 30 (1959), pp. 1141–1144, https://doi.org/10.
1214/aoms/1177706098. (Cited on pp. 554, 589)

C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society,
2012. (Cited on pp. 561, 565)

C. Groër, B. D. Sullivan, and S. Poole, A mathematical analysis of the R-MAT random graph
generator, Networks, 58 (2011), pp. 159–170, https://doi.org/10.1002/net.20417. (Cited on
p. 566)

A. Hagberg and N. Lemons, Fast generation of sparse random kernel graphs, PLoS One, (2015),
http://journals.plos.org/plosone/article/metrics?id=10.1371/journal.pone.0135177. (Cited on
pp. 565, 566, 590)

A. Hald, A History of Probability and Statistics and Their Applications before 1750, Wiley Ser.
Probab. Math. Statist. 501, John Wiley & Sons, 2003. (Cited on p. 565)

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social
Networks, 5 (1983), pp. 109–137, https://doi.org/10.1016/0378-8733(83)90021-7. (Cited on
p. 589)

I. M. Kloumann, J. Ugander, and J. Kleinberg, Block models and personalized PageRank, Proc.
Natl. Acad. Sci. USA, 114 (2016), pp. 33–38, https://doi.org/10.1073/pnas.1611275114. (Cited
on p. 552)

D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.,
Addison-Wesley Longman, Boston, MA, 1997. (Cited on p. 555)

T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, A scalable generative graph model
with community structure, SIAM J. Sci. Comput., 36 (2014), pp. C424–C452, https://doi.org/
10.1137/130914218. (Cited on pp. 552, 589)

M. Koyutürk, A. Grama, and W. Szpankowski, Assessing significance of connectivity and
conservation in protein interaction networks, in Research in Computational Molecular Biology,
A. Apostolico, C. Guerra, S. Istrail, P. A. Pevzner, and M. Waterman, eds., Lecture Notes
in Comput. Sci. 3909, Springer, Berlin, 2006, pp. 45–59, https://doi.org/10.1007/11732990 4.
(Cited on pp. 551, 552)

M. Koyutürk, W. Szpankowski, and A. Grama, Assessing significance of connectivity and
conservation in protein interaction networks, J. Comput. Biol., 14 (2007), pp. 747–764, https:
//doi.org/10.1089/cmb.2007.R014. (Cited on pp. 551, 552)

J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, Realistic, mathematically
tractable graph generation and evolution, using Kronecker multiplication, in Knowledge Discovery
in Databases: PKDD 2005, Lecture Notes in Comput. Sci. 3721, Springer, Berlin, 2005, pp. 133–
145, https://doi.org/10.1007/11564126 17. (Cited on pp. 555, 589)

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, Kronecker
graphs: An approach to modeling networks, J. Mach. Learn. Res., 11 (2010), pp. 985–1042,
http://www.jmlr.org/papers/volume11/leskovec10a/leskovec10a.pdf. (Cited on pp. 555, 556)

N. Litvak, W. Scheinhardt, and Y. Volkovich, In-degree and PageRank of Web pages: Why do
they follow similar power laws?, Internet Math., 7 (2007), pp. 175–198. (Cited on p. 556)

M. M. Mansour, Pruned bit-reversal permutations: Mathematical characterization, fast algorithms
and architectures, IEEE Trans. Signal Process., 61 (2013), pp. 3081–3099, https://doi.org/10.
1109/TSP.2013.2245656. (Cited on p. 593)

J. C. Miller and A. Hagberg, Efficient generation of networks with given expected degrees, in
Algorithms and Models for the Web Graph, Lecture Notes in Comput. Sci. 6732, Springer,
Berlin, 2011, pp. 115–126. (Cited on pp. 566, 589)

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network
motifs: Simple building blocks of complex networks, Science, 298 (2002), pp. 824–827, https:
//doi.org/10.1126/science.298.5594.824. (Cited on pp. 551, 552, 556)

S. Moreno, S. Kirshner, J. Neville, and S. V. N. Vishwanathan, Tied Kronecker product graph
models to capture variance in network populations, in 2010 48th Annual Allerton Conference on

http://www.jstor.org/stable/2844116
https://doi.org/10.1145/347090.347121
https://doi.org/10.1145/347090.347121
https://doi.org/10.1007/b97336
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1002/net.20417
http://journals.plos.org/plosone/article/metrics?id=10.1371/journal.pone.0135177
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1073/pnas.1611275114
https://doi.org/10.1137/130914218
https://doi.org/10.1137/130914218
https://doi.org/10.1007/11732990_4
https://doi.org/10.1089/cmb.2007.R014
https://doi.org/10.1089/cmb.2007.R014
https://doi.org/10.1007/11564126_17
http://www.jmlr.org/papers/volume11/leskovec10a/leskovec10a.pdf
https://doi.org/10.1109/TSP.2013.2245656
https://doi.org/10.1109/TSP.2013.2245656
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824

COIN-FLIPPING, BALL-DROPPING, AND GRASS-HOPPING 595

Communication, Control, and Computing, Allerton, 2010, pp. 1137–1144, https://doi.org/10.
1109/ALLERTON.2010.5707038. (Cited on p. 590)

S. Moreno and J. Neville, Network hypothesis testing using mixed Kronecker product graph
models, in 2013 IEEE 13th International Conference on Data Mining, 2013, pp. 1163–1168,
https://doi.org/10.1109/ICDM.2013.165. (Cited on p. 551)

S. Moreno, J. J. Pfieffer, J. Neville, and S. Kirshner, A scalable method for exact sampling
from Kronecker family models, IEEE International Conference on Data Mining (ICDM), 2014,
pp. 440–449. (Cited on pp. 560, 567, 588, 589)

G. M. Morton, A Computer Oriented Geodetic Data Base; and a New Technique in File Se-
quencing, Tech. report, IBM, 1966, https://domino.research.ibm.com/library/cyberdig.nsf/0/
0dabf9473b9c86d48525779800566a39. (Cited on p. 578)

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, Introducing the Graph 500,
Cray User’s Group, 2010. (Cited on pp. 552, 556, 566, 567)

M. E. J. Newman, Random graphs with clustering, Phys. Rev. Lett., 103 (2009), art. 058701,
https://doi.org/10.1103/PhysRevLett.103.058701. (Cited on p. 552)

M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys.
Rev. E, 69 (2004), art. 026113, https://doi.org/10.1103/PhysRevE.69.026113. (Cited on p. 557)

J. A. Orenstein and T. H. Merrett, A class of data structures for associative searching, in
Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
PODS ’84, ACM, New York, 1984, pp. 181–190, https://doi.org/10.1145/588011.588037. (Cited
on p. 578)

G. Palla, L. Lovász, and T. Vicsek, Multifractal network generator, Proc. Natl. Acad. Sci. USA,
107 (2010), pp. 7640–7645, https://doi.org/10.1073/pnas.0912983107. (Cited on p. 590)

P. Pollack, Euler and the partial sums of the prime harmonic series, Elem. Math, 70 (2015),
pp. 13–20. (Cited on p. 563)

E. Ravasz and A.-L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E, 67
(2003), art. 026112. (Cited on p. 556)

C. Seshadhri, A. Pinar, and T. G. Kolda, An in-depth analysis of stochastic Kronecker graphs,
J. ACM, 60 (2013), pp. 13:1–13:32, https://doi.org/10.1145/2450142.2450149. (Cited on p. 556)

J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference
Manual, Addison-Wesley Professional, 2001. (Cited on p. 561)

D. E. Smith, A Source Book in Mathematics, Courier Corporation, 2012. (Cited on p. 565)
R. P. Stanley, What is enumerative combinatorics?, in Enumerative Combinatorics, Springer,

1986, pp. 1–63. (Cited on p. 571)
M. Vinkler, J. Bittner, and V. Havran, Extended Morton codes for high performance bounding

volume hierarchy construction, in Proceedings of High Performance Graphics, HPG ’17, ACM,
New York, 2017, pp. 9:1–9:8, https://doi.org/10.1145/3105762.3105782. (Cited on p. 578)

E. Yu, http://math.stackexchange.com/questions/247569, 2012. Accessed January 4, 2017. (Cited
on p. 563)

https://doi.org/10.1109/ALLERTON.2010.5707038
https://doi.org/10.1109/ALLERTON.2010.5707038
https://doi.org/10.1109/ICDM.2013.165
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://doi.org/10.1103/PhysRevLett.103.058701
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1145/588011.588037
https://doi.org/10.1073/pnas.0912983107
https://doi.org/10.1145/2450142.2450149
https://doi.org/10.1145/3105762.3105782
http://math.stackexchange.com/questions/247569

	Introduction and Motivation for Fast Random Graph Generation
	Random Graph Models and Matrices of Probabilities
	The Adjacency Matrix
	A Random Adjacency Matrix as a Random Graph
	The Erdos–Rényi Model
	Random Graph Models as Matrices of Probabilities
	The Coin-Flipping Method for Sampling a Random Graph
	The Kronecker Model
	The Chung–Lu model
	The Stochastic Block Model
	Undirected Graphs

	Efficiently Generating Edges for Erdos–Rényi Graphs: Ball-Dropping and Grass-Hopping
	Ball-Dropping
	Grass-Hopping
	Comparing Ball-Dropping to Grass-Hopping with Coupon Collectors
	A Historical Perspective on Leap-Frogging, Waiting Times, and the Geometric Method

	Chung–Lu and Stochastic Block Models: Unions of Erdos–Rényi Graphs
	Fast Sampling of Kronecker Graphs via Grass-Hopping
	The Problem with Ball-Dropping
	Kronecker Graphs as Unions of Erdos–Rényi
	The Number of Erdos–Rényi Regions in a Kronecker Matrix
	The Strategy for Grass-Hopping on Kronecker Graphs: Multiplication Tables and Kronecker Products
	Enumerating All Erdos–Rényi Regions
	Grass-Hopping within an Erdos–Rényi Region in the Multiplication Table: Unranking Multiset Permutations
	Mapping from the Multiplication Table to the Kronecker Graph: Morton Codes
	The Proof of the Multiplication Table to Kronecker Matrix Per-mutation
	Fixing Ball-Dropping Using What We've Learned

	Problems and Pointers
	Recap of the Major Literature
	Pointers to More Complex Graph Models
	Problems

	References

